CSC375F Problem Set 2 Spring, 2006

Due: Wednesday, March 8, beginning of tutorial

NOTE: Each problem set only counts 5% of your mark, but it is important to do
your own work (but see below). Similar questions will appear on the first term test which
will cover material relating to both assignment 1 and assignment 2. You may consult
with others concerning the general approach for solving problems on assignments, but
you must write up all solutions entirely on your own. However, for problem set 1, you
may work in pairs for the bonus questions. Anything else is plagiarism, and is subject
to the University’s Code of Behavior. You will receive 1/5 points for any (non bonus)
question/subquestion for which you say ”I do not know how to answer this question”.
You will receive .5/5 points if you just leave the question blank.

1. Suppose you have a method for multiplying 5 x 5 matrices using ¢ multiplications
(without commutativity). How small does ¢ have to be in order to beat the cur-
rent asymptotically fastest matrix multiplciation algorithm which has complexity
O(n*38). Justify your answer. [10 points]

2. Consider the following one machine scheduling problem. (Note: We already consid-
ered this problem for the special case of unit profit.) We are given n jobs Ji,..., J,
with J; = (d;, t;,v;) where d; is the deadline for job J;, t; is its processing time,
and v; is its profit. Assume all input parameters are positive integers. A schedule
is a function o : {1,...,n} — {0,1,2,...} U {oo} where o(i) = co means that job
J; is not scheduled and (i) = k means that job J; begins executing at time k. A
schedule is feasible if
(1) for all 4 # j if 0(i) # oo and o(j) # oo then [0(i), 0 (i) +t;) N[o(j),0(j)+1t;) =0
(2) for all ¢, if o(i) # oo then o (i) + t; < d;.

That is, no two scheduled jobs will overlap and every scheduled job finishes before its
deadline. The optimization problem is to find a feasible schedule o that maximizes
Za(i) Lo Vi That is, to maximize the profit of scheduled jobs in a feasible schedule.

(a) Using an exchange argument show that every feasible schedule can be rear-
ranged so that o(7) < o(j) # oo implies that d; < d;; that is, jobs in a feasible
schedule can be scheduled in order of their deadlines. [6 points]

(b) Now consider the case that all processing times are not too large, say t; < n?
for all 4. Describe a polynomial time dynamic programming algorithm for
computing the value of an optimal solution. In particular, specify appropriate
semantic and computational arrays, briefly justify that your algorithm is cor-
rect, and estimate the time complexity of your algorithm. Hint: First sort the
jobs so that d; < dy... < d,. Observe that this problem is a generalization
of the knapsack problem. The knapsack problem is the special case where all
d; = W where W is the weight bound for the knapsack and the knapsack item
weights are w; = t;. [20 points]



. Consider the weighted interval covering problem where now all intervals I; have an
associated cost ¢;; that is, Z = {[;|]1 < i < n} and I; = (s;, fi, ¢;). As for the case
of unit costs, we want to compute a cover Z' C 7 so as to minimize the cost of the
cover ¢(Z) = Y cv ci- Describe a polynomial time DP algorithm for this problem.
In particular, specify appropriate semantic and computational arrays, briefly justify
that your algorithm is correct, and estimate the time complexity of your algorithm.

[20 points]

. Extend the DP algorithm for edit distance (string alignment) so that in addition to
the matching costs a,, and delete cost ¢ there is the possibility of a transposition
cost 7 where symbols zy can be transposed to yx at a cost of 7. [15 points]

. Using less than or equal 200 words, write a paragraph that articulates the relation
(if any) and difference (if any) between divide and conquer and DP algorithms.
[15 points]

. Suppose we are given a flow network F with integer edge capacities {c.le € E}
and we are also given a max flow f in F. Suppose we want to increase the max
flow by one unit by increasing the capacity of certain edges by one unit each. Show
how to efficiently compute a minimal set of edges E' C E such that after increasing
the capacity for edges e € E’, the max flow f’ in the resulting network F' has
val(f') = wval(f) + 1. Your method should take time proportional to Dikstra’s
shortest path algorithm. [15 points]



