CSC375S Problem Set 1 Winter /Spring 2005

Due: Wednesday, January 26, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do your
own work (but see below). These assignments will be followed by term tests, each worth
15% of your final grade. You may consult with others concerning the general approach for
solving problems on assignments, but you must write up all solutions entirely on your own.
You may chose to work in pairs and then submit one assignment but both partners should
work on all questions. Anything else is plagiarism, and is subject to the University’s Code
of Behavior. You will receive 1/5 points for any question/subquestion for which you say
“I do not know how to answer this question”. You will receive .5/5 points if you just leave
the question blank.

1. Consider the problem of interval colouring where the goal is to minimize the num-
ber of colours used in a feasible colouring where a feasible colouring is one in which
intervals receiving the same colour do not intersect.

Consider the following greedy algorithm for the interval colouring problem:

Sort Z so that s; < s9...< s,
For j=1..n
Colour interval I; with the lowest numbered colour ¢ such that

for any k < j, if I and I; intersect then I did not receive colour c.
EndFor

(a) Prove that this greedy algorithm is optimal. Hint: what can be said at the
time that the algorithm first uses it largest colour?

(b) Show that the algorithm is not optimal if the intervals are not first sorted?
Would the algorithm be optimal if the intervals were sorted by non-decreasing
(or non-increasing) processing times?

2. Consider the following “best fit” greedy algorithm for the unweighted interval schedul-
ing problem on m identical machines.

SOI‘tI:{Il,...,In} so that f1 ng S fn

For j=1.m

t; =0 % t; will be the (current) latest finish time on machine j
EndFor
Forv=1..n

If there exists j such that ¢; < s; then
schedule I; on that machine j which minimizes s; —¢; > 0;
tj=fi
EndIf
Endfor

(a) Prove that “best fit” always produces an optimal schedule.



(b) Consider the “first fit” greedy algorithm where we replace the statement “sched-
ule I; on that machine j which minimizes s; —¢; > 0” by “schedule I; on the
machine of smallest index j such that s; —t; > 0.

Show that “first fit” is not an optimal algorithm.

(c) What is the best approximation ratio you can prove for “first fit”?

3. Consider the following scheduling problem. We are given n jobs Ji,...,J, where
each job J; is described by a processing time p; and a value v;. A schedule is
simply an ordering 7 of the jobs so that Jr(1) is scheduled first, Jr(3) next, etc.
The goal is to schedule all jobs sequentially (without overlap) so as to minimize the
weighted completion time ), .. vz * Cri) where Cr1y = pr) and for i > 2,
Cr(iy = Cr(i=1) + Pr(s) 1s the completion time of the i job in the schedule. Give a
(fixed order) greedy algorithm which always produces an optimal schedule. Prove
that your algorithm is optimal.

Hint: Study the exchange argument used in section 4.2.

4. (a) Consider the unweighted interval scheduling problem and the third non-optimal
greedy algorithm given in the text; namely in each iteration select an interval
I € T that intersects the fewest intervals in Z. Then remove that I and all
the intervals it intersects. Give an argument showing that this algorithm is a
2-approximation algorithm.
Hint: Want to show that when we choose an interval I, there can be at most
2 disjoint intervals intersecting 1.

(b) The text gives an example where this algorithm accepts three intervals whereas
an optimal algorithm would accept 4 intervals showing that the approximation
ratio is at best 4/3. Can you improve either the upper (2) or lower (4/3) bound
for the approximation ratio of this algorithm?

5. Consider the following {0,2,3} variant of the knapsack problem. Given n items
(v1,w1), -, (v, wy,) and knapsack weight bound W, we define a feasible solution o
as a sequence 0 =< ¢i,...,C, > in {0,2,3}" such that >, ¢; ¥ w; < W and define
its value V(o) as ), ¢; * v;. That is, every item that occurs in the knapsack occurs
2 or 3 times.

Describe a dynamic programming algorithm for this {0, 2,3} knapsack problem by
defining an appropriate “semantic array” A , and a recurrence (including the base
cases) for computing elements of A. Justify why the recurrence is correct.

6. Possibly more to follow



