size of the input. Here O(f) denotes the set of functions g such that |g(x)| is bounded by a constant multiple of |f(x)| when x is sufficiently large (that is, there exist c, a such that $|g(x)| \le c |f(x)|$ when $|x| \ge a$).

Many problems we study in Chapters 1-4 have good algorithms; other notions of complexity (Appendix B) need not trouble us yet. Since we don't know how long a particular operation may take on a particular computer, constant factors in running time have little meaning. Hence the "Big Oh" notation O(f) is convenient. When f is a quadratic polynomial, we typically abuse notation by writing $O(n^2)$ instead of O(f) to describe functions that grow at most quadratically in terms of n.

3.2.4. Remark. Let G be an X, Y-bigraph with n vertices and m edges. Since $\alpha'(G) \leq n/2$, we find a maximum matching in G by applying Algorithm 3.2.1 at most n/2 times. Each application explores a vertex of X at most once, just before marking it; thus it considers each edge at most once. If the time for one edge exploration is bounded by a constant, then this algorithm to find a maximum matching runs in time O(nm). Theorem 3.2.22 presents a faster algorithm, with running time $O(\sqrt{nm})$. Section 3.3 discusses a good algorithm for maximum matching in general graphs.

WEIGHTED BIPARTITE MATCHING

Our results on maximum matching generalize to weighted X, Y-bigraphs, where we seek a matching of maximum total weight. If our graph is not all of $K_{n,n}$, then we insert the missing edges and assign them weight 0. This does not affect the numbers we can obtain as the weight of a matching. Thus we assume that our graph is $K_{n,n}$.

Since we consider only nonnegative edge weights, some maximum weighted matching is a perfect matching; thus we seek a perfect matching. We solve both the maximum weighted matching problem and its dual.

3.2.5. Example. Weighted bipartite matching and its dual. A farming company owns n farms and n processing plants. Each farm can produce corn to the capacity of one plant. The profit that results from sending the output of farm i to plant j is $w_{i,j}$. Placing weight $w_{i,j}$ on edge $x_i y_j$ gives us a weighted bipartite graph with partite sets $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_n\}$. The company wants to select edges forming a matching to maximize total profit.

The government claims that too much corn is being produced, so it will pay the company not to process corn. The government will pay u_i if the company agrees not to use farm i and v_j if it agrees not to use plant j. If $u_i + v_j < w_{i,j}$, then the company makes more by using the edge $x_i y_j$ than by taking the government payments for those vertices. In order to stop all production, the government must offer amounts such that $u_i + v_j \geq w_{i,j}$ for all i, j. The government wants to find such values to minimize $\sum u_i + \sum v_j$.

3.2.6. Definition. A transversal of an n-by-n matrix consists of n positions, one in each row and each column. Finding a transversal with maximum sum is the **Assignment Problem**. This is the matrix formulation of the **maximum weighted matching** problem, where nonnegative weight $w_{i,j}$ is assigned to edge $x_i y_j$ of $K_{n,n}$ and we seek a perfect matching M to maximize the total weight w(M).

With these weights, a (weighted) cover is a choice of labels u_i, \ldots, u_n and v_j, \ldots, v_n such that $u_i + v_j \ge w_{i,j}$ for all i, j. The cost c(u, v) of a cover (u, v) is $\sum u_i + \sum v_j$. The minimum weighted cover problem is that of finding a cover of minimum cost.

Note that the problem of minimum weight perfect matching can be solved using maximum weight matching; simply replace each weight $w_{i,j}$ with $M-w_{i,j}$ for some large number M.

The next lemma shows that the weighted matching and weighted cover problems are dual problems.

3.2.7. Lemma. For a perfect matching M and cover (u, v) in a weighted bipartite graph G, $c(u, v) \ge w(M)$. Also, c(u, v) = w(M) if and only if M consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$. In this case, M and (u, v) are optimal.

Proof: Since M saturates each vertex, summing the constraints $u_i + v_j \ge w_{i,j}$ that arise from its edges yields $c(u, v) \ge w(M)$ for every cover (u, v). Furthermore, if c(u, v) = w(M), then equality must hold in each of the n inequalities summed. Finally, since $c(u, v) \ge w(M)$ for every matching and every cover, c(u, v) = w(M) implies that there is no matching with weight greater than c(u, v) and no cover with cost less than w(M).

A matching and a cover have the same value only when the edges of the matching are covered with equality. This leads us to an algorithm.

3.2.8. Definition. The equality subgraph $G_{u,v}$ for a cover (u, v) is the spanning subgraph of $K_{n,n}$ having the edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$.

If $G_{u,v}$ has a perfect matching, then its weight is $\sum u_i + \sum v_j$, and by Lemma 3.2.7 we have the optimal solution. Otherwise, we find a matching M and a vertex cover Q of the same size in $G_{u,v}$ (by using the Augmenting Path Algorithm, for example). Let $R = Q \cap X$ and $T = Q \cap Y$. Our matching of size |Q| consists of |R| edges from R to Y - T and |T| edges from T to X - R, as shown below. To seek a larger matching in the equality subgraph, we change (u, v) to introduce an edge from X - R to Y - T while maintaining equality on all edges of M.

A cover requires $u_i + v_j \ge w_{i,j}$ for all i, j; the difference $u_i + v_j - w_{i,j}$ is the excess for i, j. Edges joining X - R and Y - T are not in $G_{u,v}$ and have positive excess. Let ϵ be the minimum excess on the edges from X - R to Y - T. Reducing u_i by ϵ for all $x_i \in X - R$ maintains the cover condition for these edges while bringing at least one into the equality subgraph. To maintain the cover condition for the edges from X - R to T, we also increase v_j by ϵ for $y_j \in T$.

We repeat the procedure with the new equality subgraph; eventually we obtain a cover whose equality subgraph has a perfect matching. The resulting algorithm was named the **Hungarian Algorithm** by Kuhn in honor of the work of König and Egerváry on which it is based.

3.2.9. Algorithm. (Hungarian Algorithm—Kuhn [1955], Munkres [1957]).

Input: A matrix of weights on the edges of $K_{n,n}$ with bipartition X, Y.

Idea: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching.

Initialization: Let (u, v) be a cover, such as $u_i = \max_j w_{i,j}$ and $v_j = 0$.

Iteration: Find a maximum matching M in $G_{u,v}$. If M is a perfect matching, stop and report M as a maximum weight matching. Otherwise, let Q be a vertex cover of size |M| in $G_{u,v}$. Let $R = X \cap Q$ and $T = Y \cap Q$. Let

$$\epsilon = \min\{u_i + v_j - w_{i,j} \colon x_i \in X - R, \ y_j \in Y - T\}.$$

Decrease u_i by ϵ for $x_i \in X - R$, and increase v_j by ϵ for $y_j \in T$. Form the new equality subgraph and repeat.

We have presented the algorithm using bipartite graphs, but repeatedly drawing a changing equality subgraph is awkward. Therefore, we compute with matrices. The initial weights form a matrix A with $w_{i,j}$ in position i, j. We associate the vertices and the labels (u, v) with the rows and columns, which serve as X and Y, respectively. We subtract $w_{i,j}$ from $u_i + v_j$ to obtain the **excess** matrix: $c_{i,j} = u_i + v_j - w_{i,j}$. The edges of the equality subgraph correspond to 0s in the excess matrix.

3.2.10. Example. Solving the Assignment Problem. The first matrix below is the matrix of weights. The others display a cover (u, v) and the corresponding excess matrix. We underscore entries in the excess matrix to mark a maximum matching M of $G_{u,v}$, which appears as bold edges in the equality subgraphs drawn for the first two excess matrices. (Drawing the equality subgraphs is not necessary.) A matching in $G_{u,v}$ corresponds to a set of 0s in the excess matrix with no two in any row or column; call this a **partial transversal**.

A set of rows and columns covering the 0s in the excess matrix is a **covering set**; this corresponds to a vertex cover in $G_{u,v}$. A covering set of size less than n yields progress toward a solution, since the next weighted cover costs less. We study the 0s in the excess matrix and find a partial transversal and a covering set of the same size. In a small matrix, we can do this by inspection.