Section 3.2: Algorithms and Applications 125

size of the input. Here O(f) denotes the set of functions g such that jg(x)]
is bounded by a constant multiple of | (x)| when x is sufficiently large (that
is, there exist c, a such that |g(x)| < ¢[f(x)] when |x| > a).

Many problems we study in Chapters 1-4 have good algorithms; other no-
tions of complexity (Appendix B) need not trouble us vet. Since we don’t know
how long a particular operation may take on a particular computer, constant
factors in running time have little meaning. Hence the “Big Oh” notation O(f)
is convenient. When f is a quadratic polynomial, we typically abuse nota-
tion by writing O(n?) instead of O(f) to describe functions that grow at most
quadratically in terms of n.

3.2.4. Remark. Let G be an X, ¥-bigraph with n vertices and m edges. Since
«'(G) < n/2, we find a maximum matching in G by applying Algorithm 3.2.1
at most n/2 times. Each application explores a vertex of X at most once, just
before marking it; thus it considers each edge at most once. If the time for
one edge exploration is bounded by a constant, then this algorithm to find a
maximum matching runs in time O(nm). Theorem 3.2.22 presents a faster
algorithm, with running time O(/am). Section 3.3 discusses a good algorithm
for maximum matching in general graphs. []

WEIGHTED BIPARTITE MATCHING

Our resuits on maximum matching generalize to weighted X, ¥-bigraphs,
where we seek a matching of maximum total weight. If our graph is not all of
K, ,, then we insert the missing edges and assign them weight 0. This does not
affect the numbers we can obtain as the weight of a matching. Thus we assume
that our graph is X, ,.

Since we consider only nonnegative edge weights, some maximum weighted
matching is a perfect matching; thus we seek a perfect matching. We solve both
the maximum weighted matching problem and its dual.

3.2.5. Example. Weighted.bipartite matching and its dual. A farming company
owns n farms and n processing plants. Each farm can produce corn to the
capacity of one plant. The profit that results from sending the output of farm
to plant ; is w, ;. Placing weight w; ; on edge x; y; gives us a weighted bipartite
graph with partite sets X = {x1,...,x,} and ¥ = {»1,..-. ya}. The company
wants to select edges forming a matching to maximize total profit.

The government claims that too much corn is being produced, so it will pay
the company not to process corn. The government will pay u; if the company
agrees not to use farm i and v; if it agrees not to use plant j. Ifu, +v i < wy ;, then
the company makes more by using the edge x; y; than by taking the government
payments for those vertices. In order to'stop all production, the government
must offer amounts such that «; + v; > w;; for all i, j. The government wants
to find such values to minimize " u; + Y v;.]

126 Chapter 3: Matchings and Factors

3.2.6. Definition. A transversal of an n-by-n matrix consists of n positions,
one in each row and each column. Finding a transversal with maximum
sum is the Assignment Problem. This is the matrix formulation of the
maximum weighted matching problem, where nonnegative weight w; ;
is assigned to edge x;y; of K, , and we seek a perfect matching M to maxi-
mize the total weight w(M). '

With these weights, a (weighted) cover is a choice of labels u;, ... us
and v;, ..., t, such that u; +v; > w; ; for all i, j. The cost c(u. v} of a cover
(. v) is 3 u; + ¥ v;. The minimum weighted cover problem is that of
finding a cover of minimum cost.

Note that the problem of minimum weight perfect matching can be solved
using maximum weight matching; simply replace each weight w; ; with M —w; ;
for some large number M.

The next lemma shows that the weighted matching and weighted cover
problems are dual problems.

3.2.7. Lemma. For a perfect matching M and cover (s, v)ina weighted bipar-
tite graph G, c(u. v) > w(M). Also, c{u, v) = w(M) if and only if M consists
of edges x;y; such that u; +v; = wi ;. In this case, M and (u, v) are optimal.

Proof: Since M saturates each vertex, summing the constraints «; +v; > wi;
that arise from its edges yields c(u, v) > w(M) for every cover (u, v). Further-
more, if c(u, v) = w(M), then equality must hold in each of the n inequalities
summed. Finally, since c(u, v) > w(M) for every matching and every cover,
c(u,v) = w(M) implies that there is no matching with weight greater than
c(u. v) and no cover with cost less than w(M).]

A matching and a cover have the same value only when the edges of the
matching are covered with equality. This leads us to an algorithm.

3.2.8. Definition. The equality subgraph G, , for a cover (u, v) is the span-
ning subgraph of X, , having the edges x;y; such that u; + v; = w; ;.

If G, , has a perfect matching, then its weightis 3" u;+) v;, and by Lemma
3.2.7 we have the optimal solution. Otherwise, we find a matching M and a ver-
tex cover Q of the same size in G, , (by using the Augmenting Path Algorithm,
for example). Let R=0NXand T = Q2NY. Our matching of size |Q| consists
of |R| edges from R to Y — T and |T| edges from T to X — R, as shown below. To
seek a larger matching in the equality subgraph, we change (. v) to introduce
an edge from X — R to Y — T while maintaining equality on all edges of M.

A cover requires u; +v; = w;; for alt i, j; the difference u; + v; — w;; is
the excess for i, j. Edges joining X — R and ¥ — T are not in G, and have
positive excess. Let ¢ be the minimum excess on the edgesfrom X —Rto ¥ —T.
Reducing u; by ¢ for all x; € X — R maintains the cover condition for these edges
while bringing at least one into the equality subgraph. To maintain the cover
condition for the edges from X — R to T, we also increase v; by e fory; € T.

Section 3.2: Algorithms and Applications 127

We repeat the procedure with the new equality subgraph; eventually we
obtain a cover whose equality subgraph has a perfect matching. The resulting
algorithm was named the Hungarian Algorithm by Kuhn in honor of the
work of Kénig and Egervéry on which it is based.

T
+e€

3.2.9. Algorithm. (Hungarian Algorithm—Kuhn {1955], Munkres [1957]).
Input: A matrix of weights on the edges of K, . with bipartition X, ¥.

Idea: Iteratively adjusting the cover (u, v) until the equality subgraph G, , has
a perfect matching.

Initialization: Let (4, v) be a cover, such as W = max; w;; and v; = 0.
Iteration: Find a maximum matching M in G,,. f Misa perfect matching,
stop and report M as a maximum weight matching, Otherwise, let Q be a
vertex cover of size | M| in Giv Let R=XNQand T =¥ N 0. Let

e=min{u,-+vj—w,-,j:x,-eX—R, Y €Y ~T}L

Decrease u; by ¢ for x; € X — R, and increase v; by € for y; € T. Form the new
equality subgraph and repeat. N

We have presented the algorithm using bipartite graphs, but repeatedly
drawing a changing equality subgraph is awkward. Therefore, we compurte
with matrices. The initial weights form a matrix 4 with w; ; in position i, ;. We
associate the vertices and the labels (u, v) with the rows and columns, which
serve as X and Y, respectively. We subtract w; ; from u; +u; to obtain the excess
matrix: ¢; ; = u; 4+ v; ~ w; j- The edges of the equality subgraph correspond to
0Os in the excess matrix.

3.2.10. Example. Solving the Assignment Problem. The first matrix below is
the matrix of weights. The others display a cover («, v) and the corresponding
excess matrix. We underscore entries in the excess matrix to mark a maximum
matching M of G, ,, which appears as bold edges in the equality subgraphs
drawn for the first two excess matrices, (Drawing the equality subgraphs is not
necessary.) A matching in G, corresponds to a set of 0s in the excess matrix
with no two in any row or column; call this a partial transversal.

A set of rows and columns covering the 0s in the excess matrix is a cover-
ing set; this corresponds to a vertex coverin G,,. A covering set of size less
than n yields progress toward a solution, since the next weighted cover costs
less. We study the Os in the excess matrix and find a partial transversal and a
covering set of the same size. In a small matrix, we can do this by inspection.

