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Abstract

We attempt to reconcil ethe two distinct views of approximationclasses: syntactic and computational.
Syntactic classes such as MAX SNP permit structura results and have natural complete problems, while
computational classes such as APX alow usto work with classes of problems whose approximability is
well-understood. Our results provide a syntactic characterization of computational classes, and give a
computational framework for syntactic classes.

We compare the syntactically defined class MAX SNP with the computationally defined class APX,
and show that every problem in APX can be “placed” (i.e., has approximation preserving reduction
to a problem) in MAX SNP. Our methods introduce a simple, yet general, technique for creating
approximation-preserving reductions which show that any “well” approximable problem can be reduced
in an approximation-preserving manner to a problem which is hard to approximate to corresponding
factors. The reduction then follows easily from the recent non-approximability results for MAX SNP-
hard problems. We demonstrate the generality of this technique by applying it to other classes such as
RMAX(2) and MIN F*1I,(1) which have the clique problem and the set cover problem, respectively, as
complete problems.

The syntacticnatureof MAX SNPwas used by Papadimitriouand Yannakakis[23] to provideapprox-
imation agorithms for every problem in the class. We provide an alternate approach to demonstrating
this result using the syntactic nature of MAX SNP. We develop a genera paradigm, non-oblivious
local search, useful for developing simple yet efficient approximation algorithms. We show that such
algorithms can find good approximations for all MAX SNP problems, yielding approximation ratios
comparable to the best-known for a variety of specific MAX SNP-hard problems. Non-obliviouslocal
search provably out-performs standard local search in both the degree of approximation achieved and
the efficiency of the resulting algorithms.
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1 Introduction

The approximability of NP optimization (NPO) problems has been investigated in the past viathe definition
of two different types of problem classes: syntactically-defined classes such as MAX SNP (the class of
NPO problems expressible as bounded-arity constraint satisfaction problems) and computationally-defined
classes such as APX (the class of NPO problems to which a constant factor approximation can be found
in polynomia time); see Section 2 for formal definitions. The former is useful for obtaining structural
resultsand has natural compl ete problems, whilethelatter allowsusto work with classes of problemswhose
approximability is completdly determined. We attempt to develop linkages between these two views of
approximation problemsand thereby obtain new insightsabout both types of classes. We show that anatural
generalization of MAX SNP rendersit identical to the class APX. This further validates Papadimitriou and
Yannakakis's definition of MAX SNP as providing a structural basis to the study of approximability. Asa
side-effect, we resolve the open problem of identifying complete problems for MAX NP. Our techniques
extend to ageneric theorem that can be used to create an approximation hierarchy. We also develop ageneric
algorithmic paradigm which is guaranteed to provide good approximations for MAX SNP problems, and
may also have other applications.

1.1 Background and Motivation

A widevariety of classes are defined based directly on the polynomial-time approximability of the problems
contained within, e.g., APX (constant-factor approximable problems), PTAS (problems with polynomial-
time approximation schemes), and FPTAS (problems with fully-polynomial -time approxi mation schemes).
The advantage of working with classes defined using approximability as the criterion is that it allows us to
work with problems whose approximability is well-understood. Crescenzi and Panconesi [8] have recently
al so been ableto exhibit complete problemsfor such classes, particularly APX. Unfortunately such complete
problems seem to be rare and artificial, and do not seem to provide insight into the more natural problems
in the class. Research in this direction has to find approximation-preserving reductions from the known
complete but artificial problemsin such classesto the natural problemstherein, with aview to understanding
the approximability of the |atter.

The second family of classes of NPO problems that have been studied are those defined via syntactic
considerations, based on a syntactic characterization of NP due to Fagin [10]. Research in this direction,
initiated by Papadimitriou and Yannakakis [23], and followed by Panconesi and Ranjan [22] and Kolaitis
and Thakur [20], has led to the identification of approximation classes such as MAX SNP, RMAX(2), and
MIN F+1I,(1). The syntactic prescription in the definition of these classes has proved very useful in the
establishment of complete problems. Moreover, the recent results of Arora, Lund, Motwani, Sudan, and
Szegedy [2] have established the hardness of approximating complete problems for MAX SNP to within
(specific) constant factors unless P = NP. It is natural to wonder why the hardest problemsin this syntactic
sub-class of APX should bear any relation to all of NP.

Though the computational view allows us to precisdly classify the problems based on their approxima:
bility, it does not yield structural insights into natural questions such as. Why certain problems are easier
to approximate than some others? What is the canonical structure of the hardest representative problems
of a given approximation class? and, so on. Furthermore, intuitively speaking, this view is too abstract to
facilitate identification of, and reductionsto establish, natural complete problems for a class. The syntactic
view, on the other hand, is essentially a structural view. The syntactic prescription gives a natural way
of identifying canonical hard problems in the class and performing approximation-preserving reductions to
establish complete problems.

Attemptsat trying to find aclasswith both the above mentioned properties, i.e., natural compl ete problems
and capturing all problems of a specified approximability, have not been very successful. Typically thefocus



has been to relax the syntactic criteria to allow for a wider class of problems to be included in the class.
However in all such cases it seems inevitable that these classes cannot be expressive enough to encompass
al problemswith agiven approximability. Thisisbecause each of these syntactically defined approximation
classesisstrictly contained in the class NPO; the strict contai nment can be shown by syntactic considerations
aone. Asaresult if we could show that any of these classes containsall of P, then we would have separated
P from NP. We would expect that every class of this nature would be missing some problems from P, and
this has indeed been the case with al current definitions.

We explore a different direction by studying the structure of the syntactically defined classes when we
look at their closure under approximation-preserving reductions. The idea of looking at the closure of a
classisimplicit in the work of Papadimitriou and Yannakakis [23] who state that: minimization problems
will be “ placed” in the classes through L-reductions to maximization problems. The advantage of 1ooking
at the closure of a set isthat it maintains the complete problems of the set, while managing to include all
of P into the closure (for problems in P, the reduction is to simply use a polynomial time algorithm to
compute an exact solution). It now becomes interesting, for example, to compare the closure of MAX SNP
(denoted MAX SNP) with APX. A positiveresolution, i.e.,, MAX SNP = APX, would immediately imply
the non-existence of a PTAS for MAX SNP-hard problems, sinceit is known that PTAS isa strict subset of
APX, if P # NP. On the other hand, an unconditional negative result would be difficult to obtain, since it
would imply P # NP.

Here we resolve this question in the affirmative. The exact nature of the result obtained depends
upon the precise notion of an approximation preserving reduction used to define the closure of the class
MAX SNP. The strictest notion of such reductions available in the literature are the L-reductions due
to Papadimitriou and Yannakakis [23]. We work with a slight extension of the reduction, which we call
E-reductions. Using such reductions to define the class MAX SNP we show that this equals APX-PB, the
class of al polynomialy bounded NP optimization problems which are approximable to within constant
factors. By using slightly looser definitions of approximation preserving reductions (and in particular the
PTAS-reductions of Crescenzi et a [9]) this can be extended to include all of APX into MAX SNP. We then
build upon this result to identify an interesting hierarchy of such approximability classes. An interesting
side-effect of our resultsis the positive answer to the question of Papadimitriou and Yannakakis [23] about
whether MAX NP has any compl ete problems.

Thesyntactic view seemsuseful not only in obtaining structural complexity resultsbut also in devel oping
paradigms for designing efficient approximation algorithms. This was demonstrated first by Papadimitriou
and Yannakakis [23] who show approximation algorithms for every problem in MAX SNP. We further
exploit the syntactic nature of MAX SNP to develop another paradigm for designing good approximation
algorithms for problems in that class and thereby provide an aternate computational view of it. We
refer to this paradigm as non-oblivious local search, and it is a modification of the standard local search
technique[25]. We show that every MAX SNP problem can be approximated to within constant factors by
such algorithms. It turns out that the performance of non-obliviouslocal search is comparable to that of the
best-known approximation algorithmsfor several interesting and representative problemsin MAX SNP. An
intriguing possibility is that thisisnot a coincidence, but rather a hint at the universality of the paradigm or
some variant thereof.

Our results are related to some extent to those of Ausiello and Protasi [4]. They define aclass GLO (for
Guaranteed L ocal Optima) of NPO problemswhich have the property that for al locally optimum solutions,
the ratio between the value of the global and the local optimum is bounded by a constant. It follows that
GLOisasubset of APX, andit wasshownthat itisin fact astrict subset. We show that aMAX SNP problem
isnot contained in GLO, thereby establishing that MAX SNP is not contained in GLO. This contrastswith
our notion of non-obliviouslocal search which is guaranteed to provide constant factor approximations for
al problemsin MAX SNP. In fact, our resultsindicate that non-obliviouslocal search is significantly more
powerful than standard local search in that it delivers strictly better constant ratios, and also will provide



constant factor approximations to problems not in GLO. Independently of our work, Alimonti [1] has
used a similar local search technique for the approximation of a specific problem not contained in GLO or
MAX SNP.

1.2 Summary of Results

In Section 2, we present the definitionsrequired to state our results, and in particul ar the definitions of an E-
reduction, APX, APX-PB, MAX SNP and MAX SNP. In Section 3, we show that MAX SNP = APX-PB.
A generic theorem which allows to equate the closure of syntactic classes to appropriate computational
classesisoutlined in Section 4; we also develop an approximation hierarchy based on this result.

The notion of non-oblivious local search and NoN-OBLIVIOUS GLO is developed in Section 5. In
Section 6, we illustrate the power of non-obliviousness by first showing that oblivious local search can
achieve at most the performance ratio 3/2 for MAX 2-SAT, even if it is allowed to search exponentially
large neighborhoods; in contrast, avery simple non-obliviouslocal search algorithm achieves aperformance
ratio of 4/3. We then establish that this paradigm yields a 2% /(2% — 1) approximation to MAX k-SAT. In
Section 7, we providean alternate characterization of MAX SNPviaaclass of problemscalled MAX k-CSP.
It is shown that a simple non-oblivious a gorithm achieves the best-known approximation for this problem,
thereby providingauniformapproximationfor al of MAX SNP. In Section 8, wefurther illustratethe power
of this class of algorithms by showing that it can achieve the best-known ratio for a specific MAX SNP
problem and for VERTEX COVER (which is not contained in GLO). Thisimpliesthat MAX SNP is not
contained in GLO, and that GLO is strict subset of NON-OBLIVIOUS GLO. In Section 9, we apply it to
approximating thetraveling salesman problem. Finally, in Section 10, we apply thistechniqueto improving
along-standing approximation bound for maximum independent sets in bounded-degree graphs.

2 Preliminariesand Definitions

Given an NPO problem II and an instance Z of II, we use |Z| to denote the length of Z and O PT(T) to
denote the optimum value for this instance. For any solution S to Z, the value of the solution, denoted
by V(Z,.5), isassumed to be a polynomial time computable function which takes positive integer values
(see [7] for a precise definition of NPO).

Definition 1 (Error) Givenasolution .S to aninstanceZ of an NPO problemII, we defineitserror £(Z, S)
as

£(Z,5) = max{ V(Z,5) OPT(I)} L

OPT(I)’ V(I,5)

Noticethat theabovedefinition of error appliesuniformly to the minimizati onand maximization problems
at al levels of approximability.

Definition 2 (Performance Ratio) An approximation algorithm A for an optimization problem IT has per-
formance ratio R(n) if, given an instance Z of II with |Z| = n, the solution A(Z) satisfies

V(Z,A(T)) OPT(I)
o { OPT(T) ’V(I,A(I))} < R{n).

A solution of valuewithin a multiplicativefactor » of the optimal valueisreferred to as an r-approximation.

The performance ratio for A isR if it dways computes a solutionwith error at most ® — 1.



2.1 E-reductions

We now describe the precise approximation preserving reduction we will use in this paper. This re-
duction, which we call the E-reduction, is essentialy the same as the L-reduction of Papadimitriou and
Yannakakis[23] and differs from it in only one relatively minor aspect.

Definition 3 (E-reduction) A problem II E-reduces to a problem II' (denoted IT «xy II') if there exist
polynomial time computable functions f, ¢ and a constant 5 such that

e fmapsaninstanceZ of II to an instanceZ’ of II' such that O PT'(Z) and O PT(I') are related by a
polynomial factor i.e. there existsa polynomial p(») suchthat O PT(Z') < p(|Z|)OPT(Z).

e g mapssolutions S’ of 7’ to solutions S of Z such that

£(T,5) < BE(T, 5.

Remark 1 Among the many approxi mation preserving reductionsin the literature, the L-reduction appears
to be the strictest. The E-reduction appears to be slightly weaker (in that it allows polynomial scaling
of the problems), but is stricter than any of the other known reductions. Since all the reductions given in
this paper are E-reductions, they would also qualify as approximation-preserving reductions under most
other definitionsand in particular they fit the definitions of F-reductionsand P-reductions of Crescenzi and
Panconesi [8].

Remark 2 Having II «y II' implies that II is as well approximable as II’; in fact, an E-reduction is an
FPTA S-preserving reduction. Animportant benefit isthat thisreduction can beapplied uniformlyat all levels
of approximability. Thisis not the case with the other existing definitions of FPTAS-preserving reductionin
theliterature. For example, the FPTA S-preserving reduction (F-reduction) of Crescenzi and Panconesi [8]
is much more unrestricted in scope and does not share this important property of the E-reduction. Note
that Crescenzi and Panconesi [8] showed that there exists a problemII’ € PTAS such that for any problem
II € APX, II «y II'. Thus, there is the undesirable situation that a problem II with no PTAS has a
FPTAS-preserving reduction to a problem IT’ with a PTAS.

Remark 3 The L-reduction of Papadimitriou and Yannakakis[23] enforcesthe condition that the optima of
aninstanceZ of II belinearlyrelated to the optimaof theinstanceZ’ of II' towhichitismapped. Thisappears
to be an unnatural restriction considering that the reduction itself is allowed to be an arbitrary polynomial
time computation. Thisisthe only real difference between their L-reduction and our E-reduction, and an
E-reductioninwhich thelinearity relation of the optimasis satisfied is an L-reduction. Intuitively, however,
in the study of approxi mabilitythe desirableattributeis simply that the errorsin the corresponding sol utions
are closdly (linearly) related. The somewhat artificial requirement of a linear relation between the optimum
values precludes reductions between problems which are related to each other by some scaling factor. For
instance, it seems desirable that two problems whose objective functions are simply related by any fixed
polynomial factor should beinter-reducible under any reasonabl e definition of an approximation-preserving
reduction. Our relaxation of the L-reduction constraint is motivated precisely by this consideration.

Let C be any class of NPO problems. Using the notion of an E-reduction, we define hardness and
completeness of problems with respect C, as well its closure and polynomially-bounded sub-class.

Definition 4 (Hard and Complete Problems) A problemTl’ issaidto beC-hard if for all problemsTI € C,
we have Il «xz II'. AC-hard problemTI is said to be C-complete if in additionIT € C.



Definition 5 (Closure) The closureof C, denoted by C, isthe set of all NPO problemsII suchthat IT o II'
for someIl’ € C.

Remark 4 The closure operation maintainsthe set of complete problemsfor a class.

Definition 6 (Polynomially Bounded Subset) The polynomially bounded subset of C, denoted C-PB, isthe
set of all problemsII € C for which there exists a polynomial p(») such that for all instancesZ € II,
OPT(T) < p(|Z]).

2.2 Computational and Syntactic Classes
We first define the basic computational class APX.

Definition 7 (APX) An NPO problemII isin the class APX if there exists a polynomial time algorithm A
for II with performanceratio bounded by some constant c.

The class APX-PB consists of al polynomialy bounded NPO problems which can be approximated
within constant factorsin polynomial time.

If we let F-APX denote the class of NPO problems that are approximable to within a factor F', then
we obtain a hierarchy of approximation classes. For instance, poly-APX and log-APX are the classes of
NPO problems which have polynomial time algorithms with performance ratio bounded polynomially and
logarithmically, respectively, in the input length. More precise versions of these definitions are provided in
Section 4.

Let us briefly review the definition of some syntactic classes.

Definition 8 (MAX SNP and MAX NP [23]) MAX SNPisthe class of NPO problems expressible as find-
ing the structure S which maximizes the objective function

V(I,S) = |{Z| ¢(1'7 S,f)}|,

where T = (U;P) denotes the input (consisting of a finite universe U and a finite set of bounded arity
predicates P), S isa finite structure, and ® is a quantifier-free first-order formula. The class MAX NP is
defined anal ogously except the objective functionis

V(Z,5)={Z | 37, %(Z, 5, %, 9)}.-

A natural extension is to associate a weight with every tuple &; the modified objectiveisto find an .S
whichmaximizesV (7, 5) = >, w(Z)®(Z, S, Z), where w(Z) denotes the weight associated with the tuple

—

Z.

Example 1 (MAX k-SAT) The MAX k-SAT problem is. given a collection of m clauses on n boolean
variableswhereeach (possiblyweighted) clauseisa disjunctionof precisely & literals, find a truth assignment
satisfying a maximum weight collection of clauses. For any fixed integer £, MAX k-SAT belongs to the
classMAX SNP. The results of Papadimitriouand Yannakakis[ 23] can be adapted to show that for & > 2,
MAX k-SAT is completeunder E-reductionsfor the classMAX SNP.

Definition 9 (RMAX(K) [22]) RMAX(k) isthe class of NPO problems expressible asfinding a structure S
which maxi mizes the objective function

V(z,5) = WEIS@} if ¥, 2(Z, 5,9)
’ 0 otherwise

where S isa single predicate and ®(Z, S, %) is a quantifier-free CNF formulain which .S occurs at most &
timesin each clause and all its occurrences are negative.



Theresults of Panconesi and Ranjan [22] can be adapted to show that MAX CLIQUE iscomplete under
E-reductionsfor the class RMAX(2).

Definition 10 (MIN F*II,(k) [20]) MIN F+II,(%) isthe class of NPO problems expressible as finding a
structure S which minimizesthe objective function

_ ) HZ:8(2)} ifvE, 37, ®(Z, 5,7, 9)
V(Z,5) _{ 0 otherwise

where S isasinglepredicate, ®(Z, S, ¥) isa quantifier-free CNF formulain which S occurs at most & times
in each clauseand all its occurrences are positive.

The results of Kolaitis and Thakur [20] can be adapted to show that SET COVER is complete under
E-reductionsfor the class MIN FFII,(1).

3 MAX SNP Closure and APX-PB

In this section, we will establish the following theorem and examine itsimplications. The proof is based on
theresults of Aroraet a [2] on efficient proof verifications.

Theorem 1 MAX SNP = APX-PB.

Remark 5 The seeming weakness that MAX SNP only captures polynomially bounded APX problems
can be removed by using looser forms of approximation-preserving reduction in defining the closure. In
particular, Crescenzi and Trevisan [9] definethenotion of a PTA S-preserving reduction under which APX =
APX-PB. Usingtheir result in conjunctionwith the above theorem, it is easily seen that MAX SNP = APX.
This weaker reduction is necessary to allow for reductions from fine-grained optimization problems to
coarser (polynomially-bounded) optimization problems (cf. [9]).

Thefollowing is a surprising consequence of Theorem 1.

Theorem 2 MAX NP = MAX SNP.

Papadimitriou and Yannakakis [23] (implicitly) introduced both these closure classes but did not con-
jecture them to be the same. It would be interesting to see if this equality can be shown independent of the
result of Aroraet a [2]. We also obtain the following resol ution to the problem posed by Papadimitriou and
Yannakakis[23] of finding complete problemsfor MAX NP.

Theorem 3 MAX SAT iscompletefor MAX NP.

The following sub-sections establish that MAX SNP O APX-PB. Theideais to first E-reduce any
minimizati on problemin APX-PBto amaximization problemintherein, and then £ -reduce any maximization
problemin APX-PB to aspecific completeproblem for MAX SNP, viz.,, MAX 3-SAT. Sincean E-reduction
forces the optimas of the two problems involved to be related by polynomial factors, it is easy to see that
MAX SNP C APX-PB. Combining these two facts, we obtain Theorem 1.



3.1 Reducing Minimization to Maximization

Observe that the fact that II belongs to APX implies the existence of an approximation algorithm A and a
constant ¢ such that OPT(T
OPT(I) <V(I,A(T)) < c¢cx OPT(I).

C
Henceforth, wewill usea(Z) todenoteV (T, A(T)). Wefirst reduceany minimizationproblemII € APX-PB
to a maximization problem I’ € APX-PB, where the latter is obtained by merely modifying the objective
function for II, asfollows. Let II' have the objective function

V'(Z,8) = max{1,(c+ 1)a(Z) — V(Z,95)},

for al instances Z and solutions S for II. Clearly, V'(Z,.S) takes only positive values. To ensure that
V(T,5) is integer-valued, we can assume without loss of generality, that ¢ is an integer (a real-valued
performance ratio can always be rounded up to the next integer). It can be verified that the optimum value
for any instance 7 of I’ always lies between o(Z) and (¢ + 1)a(Z). Thus A isa(c + 1)-approximation
algorithmfor II”.

Now given asolution S’ for instance Z of II’ such that it has error ¢, we want to construct a solution §
for instance Z of II such that the error isat most 56 for some 3. We will show thisfor 8 = (¢ 4 1).

First consider thecasewhen V'(Z, 5') = li.e. § = a(Z) — 1. Inthiscase, wesimply output the solution
S = A(Z). If o(Z) = 1 thenwe aretrivialy done else we observe that

E(I,8) < (c—1) < (c+1)(a(T) - 1) < BE(I, ).

On the other hand, if V'(Z,S’) > 1, we may proceed as follows. If S’ isa é-error solution to the
optimum of II’, i.e.,
OPT'(T)
146
where O PT'(Z) isthe optimal value of V' for Z, we can conclude that

V'(T,S) > > (1- 6)OPT'(T),

(c+1)a(T)-V'(Z,S)
(c+ 1)a(I)C— OPT'(I)+ 6§ x OPT'(T)

¢ X OPT(T) + 6 x OPT'(T)

V(I,5) =

IN

IN

C

< OPT(I)+ (¢+1)§OPT(T).
Thus asolution s to II" with error § isa solution to II with error at most (¢ + 1)é, implying an E-reduction

withg = ¢ + 1.

3.2 NP Languagesand MAX 3-SAT

The following theorem, adapted from aresult of Arora, Lund, Motwani, Sudan, and Szegedy [2], iscritical
to our E-reduction of maximization problemsto MAX 3-SAT.

Theorem 4 ([2]) Givenalanguage L € NP and aninstance z € X™, one can compute in polynomial time
an instance 7, of MAX 3-SAT, with the following properties.

1. Theformula F, has m clauses, where m depends only on n.



2. Thereexistsaconstant e > 0, independent of theinput , such that (1 — €)m clausesof F, aresatisfied
by some truth assignment.

3. Ifz € L, then F, is(completely) satisfiable.
4. If z ¢ L, then no truth assignment satisfiesmore than (1 — ¢)m clauses of 7.

5. Given a truth assignment which satisfiesmore than (1 — €)m clauses of 7, a truth assignment which
satisfies F,, completely (or, alternatively, a withess showing z € L) can be constructed in polynomial
time.

Some of the properties above may not be immediately obvious from the construction given by Arora,
Lund, Motwani, Sudan, and Szegedy [2]. It is easy to verify that they provide a reduction with properties
(D), (3) and (4). Property (5) is obtained from the fact that all assignments which satisfy most clauses are
actually close (in terms of Hamming distance) to vaid codewords from a linear code, and the uniquey
error-corrected codeword obtained from this* corrupted code-word” will satisfy all the clauses of 7.

Property (2) requires a bit more care and we provide a brief sketch of how it may be ensured. Theidea
isto revert back to the PCP model and redefine the proof verification game. Suppose that the original game
had the propertiesthat for z € L there exists a proof such that the verifier accepts with probability 1, and
otherwise, for z ¢ L, the verifier accepts with probability at most 1/2. We now augment this game by
adding to the proof a 0th bit which the prover uses asfollows: if the bitis set to 1, then the prover “chooses’
to play the old game, else heiseffectively “giving up” on the game. Theverifier in turnfirst looks at the 0th
bit of the proof. If thisis set, then she performs the usual verification, else she tosses an unbiased coin and
accepts if and only if it turnsup heads. It isclear that for z € L there exists a proof on which the verifier
aways accepts. Also, for z ¢ L no proof can cause the verifier to accept with probability greater than 1/2.
Finally, by setting the Oth bit to 0, the prover can create a proof which the verifier accepts with probability
exactly 1/2. Thisproof system can now be transformed into a 3-CNF formula of the desired form.

3.3 Reducing Maximizationto MAX 3-SAT

We have already established that, without loss of generality, we only need to worry about maximization
problems IT € APX-PB. Consider such a problem TI, and let A be a polynomial-time algorithm which
delivers a c-approximation for II, where ¢ is some constant. Given any instanceZ of II, let p = ca(Z) be
the bound on the optimum value for Z obtained by running A on input Z. Note that this may be a stronger
bound than the apriori polynomial bound on the optimum value for any instance of length |Z|. Animportant
consequenceisthat p < ¢ OPT(T).

We generate a sequence of NP decision problems L, = {Z| OPT(Z) > «} for 1 < ¢ < p. Givenan
instanceZ, we create p formulas F;, for 1 < 7 < p, using the reduction from Theorem 4, where 7th formula
is obtained from the NP language L;.

Consider now theformula F = AI_, F; that has the following features.

e Thenumber of satisfiable clauses of F isexactly
MAX = (1—-€¢)mp+ em OPT(I),
where ¢ and m are as guaranteed by Theorem 4.

e Given an assignment which satisfies (1 — €)mp + emj clauses of F, we can construct in polynomial
time a solution to Z of value at least j. To see this, observe the following: any assignment which
so many clauses must satisfy more than (1 — €)m clausesin at least 5 of the formulas 7;. Let < be



the largest index for which this happens; clearly, < > j. Furthermore, by property (5) of Theorem 4,
we can nhow construct a truth assignment which satisfies F; completely. Thistruth assignment can be
used to obtain asolution S such that V/(Z, .5) > 7 > j.

In order to complete the proof it remains to be shown that given any truth assignment with error 4, i.e.,
which satisfies M AX /(1 + 6) clauses of F, we can find a solution S for Z with error £(Z, 5) < g6 for
some constant 3. We show that thisis possiblefor § = (¢ + ce)/e. The main idea behind finding such a
solutionis to use the second property above to find a“good” solutionto 7 using a*“good” truth assignment
for F.

Suppose we are given a solution which satisfies M AX /(1 4 §) clauses. Since MAX /(1 + §) >
(1-6)MAX and MAX = (1 — ¢)mp + em OPT(T), we can use the second festure from above to
construct a solution S; such that

(1-6)MAX —(1 - ¢)mp

V(I,5) > —
> (1—6)0PT(I)—§p
>

<1 — 6 <1 + g)) OPT(T).

Suppose§ < (c—1)e/(c(c+¢€)). Leté* = §(1+c/e),andy = 6*/(1 — §*). Thenitisreadily seen that

V(I,Sl) > OL(I)
144

2
ogayg(c +C€>5.

€

and that

On the other hand, if § > (¢ — 1)e/(c(c + €)), then the error in a solution S, obtained by running the
c-approximation algorithm for II is given by

2
c-1< (S15)s

€

Therefore, choosing 8 = (¢ + ce) /e, weimmediately obtain that the solution with larger value, among 5,
and S,, has error at most 36. Thus, thisreduction isindeed an E-reduction.

4 Generic Reductionsand an Approximation Hierarchy

In this section we describe ageneric techniquefor turning ahardness result into an approximation preserving
reduction.

We start by listing the kind of constraints imposed on the hardness reduction, the approximation class
and the optimization problem. We will observe at the end that these restrictions are obeyed by all known
hardness results and the corresponding approximation classes.

Definition 11 (Additive Problems) An NPO problemII is said to be additiveif there exists an operator +
and a polynomial time computablefunction f such that + mapsa pair of instancesZ; andZ, to an instance
7, + I, suchthat OPT(Z, + I,) = OPT(Z,) + OPT(Z,), and f mapsasolutions toZ; + 7, toapair of
solutions s; and s, to Z; and Z,, respectively, suchthat V(Z; + Z, s) = V(Z1, s1) + V(Z2, s2).



Definition 12 (Downward Closed Family) A family of functions F = {f : Z+ — Z*} is said to be
downward closed if for all ¢ € F and for all constants ¢ (and in particular for all integers ¢ > 1),
g'(n) € O(g(n®)) impliesthat ¢’ € F. A function g issaid to be hard for the family F' if for all ¢’ € F,
there exists a constant ¢ such that ¢’(n) € O(g(n°)); thefunction ¢ issaid to be complete for F if g is hard
for Fandg € F.

Definition 13 (F-APX) For a downward closed family F, the class F-APX consists of all polynomially
bounded optimization problems approximable to within a ratio of ¢(|Z|) for some functiong € F.

Definition 14 (Canonical Hardness) An NP maximization problemII issaid to be canonically hard for the
class F-APX if there exists a transformation T' mapping instances of 3-SAT to instances of II, constants
ny and ¢, and a gap function G which is hard for the family F', such that given an instance z of 3-SAT on
n > ne vVariablesand N > n¢, T = T'(z, N') isan instance of II with the following properties.

e Ifz € 3-SAT,thenOPT(Z) = N.
o Ifz ¢ 3-SAT, then OPT(T) = N/G(N).

e Given a solution S to Z with V(Z,5) > N/G(N ), atruth assignment satisfying z can be found in
polynomial time.

In the above definition, the transformation 7' from 3-SAT to II is somewhat special in that one can
specify the size/optimum of the reduced problem and 7' can produce a mapped instance of the desired size.
Thisadditional property is easily obtained for additive problems, by using sufficient number of additionstill
the optimum of the reduced problem is close to the target optimum, and then adding a problem of known
optimum value to the reduced problem.

Canonical hardness for NP minimization problems is analogously defined: O PT(Z) = N when the
formulaissatisfiableand O PT'(Z) = NG(N ), otherwise. Given any solutionwith valuelessthan NG(N ),
one can construct a satisfying assignment in polynomial time.

41 TheReduction

Theorem 5 If F isa downward closed family of functions, and an additive NPO problem 2 is canonically
hard for the class F'-APX-PB, then all problemsin F-APX-PB E-reduceto (2.

Proof: Let II be a polynomially bounded optimization problem in F-APX, approximable to within ¢(.)
by an agorithm A, and let © be a problem shown to be hard to within afactor G(.) where G is hard for F.
Let V and V' denote the objective functions of TI and €2, respectively. We start with the specia case where
both IT and 2 are maximization problems. We describe the functions f, g and the constant 5 as required for
an E-reduction.

Let 7 € II be an instance of size n; pick N so that ¢(n) isO(G(N)). To describe our reduction, we
need to specify the functions f and g. The function f is defined as follows. Let m = V(Z, A(Z)). For
eech: € {1,...,mec(n)}, let L; denotethe NP-language {Z| O PT(Z) > ¢}. Now for each 7, we create an
instance ¢; € Q of size N suchthatif Z € L, then OPT(¢;) isN,anditis N/G(N ) otherwise. We define
fI)=9¢=3%,¢.

We now construct the function g. Given an instance Z € II and a solution s’ to f(Z), we compute a
solution s to Z in the following manner. We first use A to find a solution s,. We also compute a second
solution s, to 7 asfollows. Let j be thelargest index such that the solution s projects down to asolution s’
to theinstance ¢; suchthat V'(#;,s;) > N/G(N ). Thisinturnimplieswe can find asolution s; to witness
V(Z,s,) > 7. Our solution s isthe one among s; and s, that yields the larger objective function value.

10



We now show that the reductionisan E-reductionwith 8 = 1 + ¢(n)/(G(N) — 1).
Let o = OPT(I)/m. Observethat

OPT(I') = Nm <a L) e > .
Consider the following two cases:
Casel[j < m]: Inthiscase V(Z,s)=m. SincesisasolutiontoZ of error at most (a — 1), it suffices

to argue that the error of s’ asasolutionto ¢ isat least (o — 1)/8. We start with the following upper bound
onV(g,s').

, c(n) 1
V(g,s') < Nm <1+ o) m)

Thus the approximation factor achieved by s’ isgiven by

Nm (a—l— Ln). L)
o) > (Gt Ebod)
m(Hé(TvL) G(N))
- G(N)—1
= (a=1) <G(N)—|—c(n)—1>
a—1
T B

So inthiscase s; (and hence s) isasolution to 7 with an error of at most ge, if s’ isasolutionto ¢ with an
error of e.

Case2[j > m]: Letj=~ym. Notethat v > 1 and that theerror of s asasolutiontoZ is(a — v)/vy. We
bound the value of the solution s’ to ¢ as

V($,s') < Nm <'y—|— GV - m

and itserror as

o ~ G(N)) )

c(n)
Tt em T Ew

- () )
- c(n)
7 L+ @
()5
v /B
(Thefinal inequality follows from thefact that 1 + ﬁﬁh <1+ ﬁ% 8.
Thus in this case aso we find that s (by virtue of s,) isa solutionto Z of error at most Ge if s’ isa
solutionto ¢ of of error e.
We now consider the more general cases where II and €2 are not both maximization problems. For the

case where both are minimization problems, the above transformation works with one minor change. When
creating ¢, the NP language consists of instances (7, ¢) such that thereexists s with V(Z, s) < s.

£(¢,s') = (

11



For the case where II is a minimization problem and €2 is a maximization problem, wefirst E-reduce II
to a maximization problem II" and then proceed as before. The reduction proceeds asfollows. Sincell isa
polynomially bounded optimization problem, we can compute an upper bound on the value of any solution
stoaninstanceZ. Let m be such abound for an instance Z. The objective function of II’ on the instance
T isdefined asV'(Z,s) = |2m?/V(Z,s)|. To begin with, it is easy to verify that Il € F-APX implies
I’ € F-APX.

Let s beasolutionto instance Z of II of error 3. We will show that s as a solution to instance Z of II’
has an error of at least 3/2. Assume, without loss of generality, that 5 # 0. Then

V(Z,s)— OPT(I)=BOPT(I) > 1.

Multiplying by 2m? /(O PT(Z)V(Z,s)), we get

2m? B 2m?> 5 2m? S 9
OPT(I) V(I,s) "V(I,s)="~
Thisimpliesthat
2m? 2m? 1 2m? 2m?
- > 145X -
OPT(I) VI(I,s) 2 " OPT(I) VI(I,s)
m [_3 « 2m?
2 V(Z,s)
Upon rearranging,
1 2m? 1 2m?
V'(Z,s) < -1)< )
@9 s a5 <OPT(I) > = {1+ 6/2) {OPT(I)J

Thusthe reduction from II to T’ isan E-reduction.
Finaly, the last remaining case, i.e., II being a maximization problem and Q being a minimization
problem, is dealt with similarly: we transform II into a minimization problem II". [ |

Remark 6 This theorem appears to merge two different notions of the relative ease of approximation of
optimization problems. One such notion would consider a problem II; easier than II, if there exists an
approximation preserving reduction from II; to II,. A different notion would regard II, to be easier than
II, if one seems to have a better factor of approximation than the other. The above statement essentially
states that these two comparisons are indeed the same. For instance, the MAX CLIQUE problem and the
CHROMATIC NUMBER problem, which are both in poly-APX, areinter-reducibleto each other. The above
observation motivates the search for other interesting function classes f, for which the class f-APX may
contain interesting optimization problems.,

4.2 Applications

Thefollowing is a consequence of Theorem 5.

Theorem 6

a) RMAX(2) = poly-APX.

b) If SET COVER is canonically hard to approximate to within a factor of Q(logn), then log-APX =
MIN FFIL,(1).

12



We briefly sketch the proof of this theorem. The hardness reduction for MAX SAT and CLIQUE are
canonical [2, 11]. TheclassesAPX-PB, poly-APX, log-APX areexpressibleasclasses F-APX for downward
closed function families. The problems MAX SAT, MAX CLIQUE and SET COVER are additive. Thus,
we can now apply Theorem 5.

Remark 7 Wewould like to point out that almost all known instances of hardness results seem to be shown
for problems which are additive. In particular, thisis true for all MAX SNP problems, MAX CLIQUE,
CHROMATIC NUMBER, and SET COVER. Two cases where a hardness result does not seem to directly
apply to an additive problemis that of LONGEST PATH [17] and BIN PACKING. In the former case, the
closelyrelated LONGEST S-T' PATH problemiseasily seen to be additiveand the hardnessresult essentially
stems fromthisproblem. Asfor the case of BIN PACKING, which does not admit a PTAS, the hardnessresult
is not of a multiplicative nature and in fact this problem can be approximated to within arbitrarily small
factors, provided a small additive error termis allowed. Thisyields a reason why this problem will not be
additive. Lastly, the most interesting optimization problems which do not seem to be additive are problems
related to GRAPH BISECTION or PARTITION, and these also happen to be notable instances where no
hardness of approxi mation results have been achieved!

5 Local Search and MAX SNP

In this section we present aformal definition of the paradigm of non-abliviouslocal search. Theideaof non-
obliviouslocal search has been implicitly present in some well-known techniques such as the interior-point
methods. We will formalize thisidea in context of MAX SNP and illustrate its application to MAX SNP
problems. Given aMAX SNP problem II, recall that the goal is to find a structure S which maximizes the
objectivefunction: V(Z,S5) = > ®(Z, S, Z). In the subsequent discussion, we view S as a k-dimensional
boolean vector.

5.1 Classical Local Search

We start by reviewing the standard mechanism for constructing alocal search agorithm. A é-local algorithm
Afor II isbased on adistancefunction?( Sy, S3) whichisthe Hamming distancebetween two &-dimensional
vectors. The §-neighborhood of a structure S isgivenby N(S5,6) = {S’ C U™ | D(S,S5") < é}, where U
is the universe. A structure S is called ¢-optimal if VS’ € N(S,6), wehave V(Z,5) > V(Z,5'). The
algorithm computes a §-optimum by performing a series of greedy improvementsto an initia structure S,
where each iteration moves from the current structure S; to some S;; € N(.S;, ) of better value (if any).
For constant ¢, a §-local search algorithm for a polynomially-bounded NPO problem runs in polynomial
time because:

e each local changeis polynomially computable, and
e the number of iterationsis polynomially bounded since the value of the objective function improves
monotonically by an integral amount with each iteration, and the optimum is polynomially-bounded.
5.2 Non-ObliviousL ocal Search

A non-oblivious local search algorithm is based on a 3-tuple (5o, F, D), where S, is the initia solution
structure which must be independent of theinput, 7(Z, S) isareal-valued function referred to as the weight
function, and P isarea-vaued distance function which returns the di stance between two structuresin some
appropriately chosen metric. The weight function F should be such that the number of distinct values taken
by F(Z,S) is polynomially bounded in the input size. Moreover, the distance function D should be such
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that given a structure S and a fixed §, N (.S, §) can be computed in time polynomia in |S|. Then, asin
classical local search, for constant §, anon-oblivious é-local algorithm terminatesin time polynomial inthe
input size.

Theclassical local search paradigm, which we call obliviouslocal search, makes the natural choice for
the function F(Z, 5'), and the distance function D, i.e., it chooses them to be V' (Z, ') and the Hamming
distance. However, aswe show later, this choice does not always yield agood approximation ratio. We now
formalize our notion of this more general type of local search.

Definition 15 (Non-Oblivious L ocal Search Algorithm) A non-oblivious local search algorithmis a é-
local search algorithmwhose weight function is defined to be

f(Iv‘S) = Zzpz¢1(17 Svf) ’
i=1

z

where r isa constant, ®;'s are quantifier-free first-order formulas, and the profits p; arereal constants. The
distance function D is an arbitrary polynomial-time computabl e function.

A non-oblivious local search can be implemented in polynomial time in much the same way as the
obliviouslocal search. Note that the we are only considering polynomially-bounded weight functions and
the profits p; are fixed independent of the input size. In general, the non-obliviousweight functions do not
direct the search in the direction of the actual objective function. In fact, as we will see, thisis exactly the
reason why they are more powerful and allow for better approximations.

We now define two classes of NPO problems.

Definition 16 (Oblivious GLO) Theclassof problemsOsLIVIous GLO consistsof all NPO problemswhich
can be approximated within constant factors by an oblivious §-local search algorithmfor some constant é.

Definition 17 (Non-Oblivious GLO) The class of problems NoN-OBLIVIOUS GLO consists of all NPO
problems which can be approximated within constant factors by a non-oblivious §-local search algorithm
for some constant é.

Remark 8 It would be perfectly reasonableto allow weight functions that are non-linear, but we stay with
the above definition for the purposes of this paper. Allowing only a constant number of predicates in the
weight functions enables us to prevent the encoding of arbitrarily complicated approximation algorithms.,
Thestructure S isa k-dimensional vector, and so a natural metricfor thedistancefunction D isthe Hamming
distance. In fact, classical local search isindeed based on the Hamming metric and thisis useful in proving
negative results for the paradigm. In contrast, the definition of non-obliviouslocal search allows for other
distance functions, but we will use only the Hamming metric in proving positive results in the remainder
of this paper. However, we have found that it is sometimes useful to modify this, for example by modifying
the Hamming distance so that the complement of a vector is considered to be at distance 1 fromit. Finally,
it is sometimes convenient to assume that the local search makes the best possible move in the bounded
neighborhood, rather than an arbitrary move which improves the weight function. We believe that this does
not increase the power of non-obliviouslocal search.

6 ThePower of Non-Oblivious L ocal Search

We will show that there exists a choice of a non-oblivious weight function for MAX k-SAT such that any
assignment which is 1-optimal with respect to thisweight function, yieldsaperformance ratio of 2% /(2% — 1)
with respect to the optimal. But first, we obtain tight bounds on the performance of obliviouslocal search
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for MAX 2-SAT, establishing that its performance is significantly weaker than the best-known result even
when allowed to search exponentially large neighborhoods. We use the following notation: for any fixed
truth assignment Z, S; isthe set of clausesin which exactly < literals are true; and, for a set of clauses S,
W (S denotes the total weight of the clausesin S.

6.1 ObliviousLocal Search for MAX 2-SAT

We show astrong separationin the performance of obliviousand non-obliviouslocal searchfor MAX 2-SAT.
Suppose we use a §-local strategy with the weight function F being the total weight of the clauses satisfied
by the assignment, i.e., 7 = W(S1) + W(S,). The following theorem shows that for any é = o(n), an
obliviousé-local strategy cannot deliver a performance ratio better than 3/2. Thisisrather surprising given
that we are willing to allow near-exponential time for the oblivious algorithm.

Theorem 7 The asymptotic performanceratio for an oblivious é-local search algorithmfor MAX 2-SAT is
3/2 for any positive § = o(n). Thisratioisstill bounded by 5/4 when § may take any value lessthann /2.

Proof: We first show the existence of an input instance for MAX 2-SAT which may dlicit ardatively
poor performance ratio for any é-local agorithm provided § = o(n). In our construction of such an input
instance, weassumethat n > 26 + 1. Theinput instance comprises of adisjoint union of four setsof clauses,
say I';,I',, I'; and T, defined as below:

r, = U (z + %),

1<i<j<n

P2 = U (Ei—l—zj)’
1<i<j<n

s = U Cait1,
0<i<é

P4 = U Civ
2642<i<n

¢ = U @E+zm).
i<j<n

Clearly, |T4| = |T2| = (3), and |Ts| + [T4| = (5) — n6 4 6(& + 1). Without loss of generality, assume
that the current input assignment is Z = (1,1,...,1). Thissatisfiesall clausesinT'; and I';. But none of
theclausesinI'; and T, are satisfied. If we flip the assignment of valuesto any k& < ¢ variables, it would
unsatisfy precisely k(n — k) clausesinI'; + I';. Thisisthe number of clausesinI'; + I'; where aflipped
variable occurs with an unflipped variable.

On the other hand, flipping the assigned values of any k < § variables can satisfy at most k(n — k)
clausesinI'; + I'y aswe next show.

Let TI(n, §) denote the set of clauses on n variables given by Uy<;<s Cait1 + Uaspa<icn ¢ Where
26 + 1 < n. We claim the following.

Lemma 1l Anyassignment of valuesto then variablessuchthat at most k£ < ¢ variableshave been assigned
value false, can satisfy at most k(n — k) clausesin II(n, §).

Proof: We prove by simultaneousinductionon» and é that the statement istrue for any instanceIl(n, §)
where n and é are non-negative integers such that 26 + 1 < n. Thebasecaseincludesn = 1 andn = 2
and istrivially verified to be true for the only alowable value of §, namely § = 0. We now assume that the
statement is true for any instance II(»/, §") such that »’ < n and 2§’ + 1 < n»’. Consider now the instance
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II(n,6). The statement is trivially true for 6 = 0. Now consider any § > 0 suchthat 26 + 1 < n. Let
{zj,,2;,,...2;, } be any choice of k < ¢ variables such that j, < 7, for p < ¢. Again the assertion is
trivialy trueif £k = 0 or k = 1. We assumethat & > 2 from now on. If we delete al clauses containing the
variables z; and z, from II(n, §), we get theinstance II(n — 2,6 — 1). We now consider three cases.

Casel1l[j; > 3]: Inthiscase, we arereduced to the problem of finding an upper bound on the maximum
number of clauses satisfied by setting any & variablestofaseinII(n — 2,6 — 1). If £ < § — 1, wemay use
the inductive hypothesis to conclude that no more than (n — 2 — k)(k) clauses will be satisfied. Thus the
assertion holdsin this case. However, we may not directly usethe inductive hypothesisif £ = §. But inthis
case We observe that since by the inductive hypothesis, setting any £ — 1 variablesin II(n — 2,6 — 1) to
false, satisfiesat most (n — 2 — (k — 1))(k — 1) clauses, assigning the value false to any set of & variables,
can satisfy at most

(n—2—(k—1)k-1)+ (n—2—(k—1))k-1)=(n— k)k — k?

k-1

clauses. Hence the assertion holdsin this case also.

Case 2 [j; = 2]: Inthiscase z;, satisfies one clause and the remaining & — 1 variables satisfy at most
(n—2—(k—1))(k— 1) clauses by theinductive hypothesison II(» — 2, § — 1). Adding up the two terms,
we see that the assertion holds.

Case3[j; = 1]: Weanayzethiscasebased onwhether j, = 20or j, > 3. If j, = 2, then z, and 2, together
satisfy precisely n — 1 clausesand the remaining k£ — 2 variables, satisfy at most (n — 2 — (k — 2))(k — 2)
clauses using the inductive hypothesis. Thusthe assertion still holds. Otherwise, z; satisfiesprecisdy n — 1
clauses and theremaining & — 1 variables satisfy no morethan (n — 1 — (k — 1))(k — 1) clausesusing the
inductive hypothesis. Summing up the two terms, we get (n — &)k as the upper bound on the total number
of clauses satisfied. Thusthe assertion holdsin this case also.
To see that this bound is tight, simply consider the situation when the & variables set to false are
21, Zay . . ., Zop_1, fOr any k < 6. Thetotal number of clauses satisfied isgivenby S, || = (n—k)k.
[ |
Assuming that each clause has the same weight, Lemma 1 allows usto concludethat a §-local algorithm
cannot increase the total weight of satisfied clauses with this starting assignment. An optimal assignment on
the other hand can satisfy all the clauses by choosing the vector Z = (0,0,...,0). Thus the performance
ratio of aé-loca agorithm, say R;, is bounded as

ITy| 4 T2 4 [Ts| 4 T4
[Ty | + |7

< 30)+6(64+1)— 5n‘

- 2(3)

For any ¢ = o(n), thisratio asymptotically converges to 3/2. We next show that this bound is tight
since a 1-local algorithm achieves it. However, before we do so, we make another intriguing observation,
namely, for any § < n/2, theratio R; isbounded by 5/4.

Now to seethat al-local algorithm ensuresaperformanceratio of 3 /2, consider any 1-optimal assignment
Z and let a; denote the set of clauses containing the variable z; such that no literal in any clause of «; is
satisfied by Z. Similarly, let 8; denote the set of clauses containing the variable z; such that precisely one
literal is satisfied in any clause in 8; and furthermore, it is precisely theliteral containing the variable z;. If
we complement the value assigned to the variable z;, it is exactly the set of clauses in «; which becomes

R5 -
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satisfied and the set of clauses in 8; which is no longer satisfied. Since Z is 1-optimal, it must be the
case that W(oy;) < W(p;). If we sum up thisinequality over all the variables, then we get the inequality
Yz Wlew) < 2201, W(B:). Weobservethat 327 W (o) = 2W(So) and 327, W(B;) = W (1) because
each clausein .S, gets counted twice while each clausein S; gets counted exactly once. Thusthe fractional
weight of the number of clauses not satisfied by a 1-local assignment is bounded as
W(So) < W(So) < W(S) 1

W (So) + W(S1) + W(S2) = 3W(So) + W(S5) — 3W(Se) 3

Hence the performance ratio achieved by a1-local algorithmisbounded from above by 3/2. Combining this
with the upper bound derived earlier, we conclude that R, = 3/2. Thisconcludesthe proof of the theorem.
[ |

6.2 Non-ObliviousLocal Search for MAX 2-SAT

We now illustrate the power of non-obliviouslocal search by showing that it achieves a performance ratio
of 4/3 for MAX 2-SAT, using 1-local search with a simple non-obliviousweight function.

Theorem 8 Non-oblivious 1-local search achieves a performanceratio of 4/3 for MAX 2-SAT.

Proof: We use the non-obliviousweight function
= 3

Consider any assignment Z which is 1-optimal with respect to this weight function. Without loss of
generality, we assume that the variables have been renamed such that each unnegated literal gets assigned
thevaluetrue. Let P, ; and N, ; respectively denote the total weight of clausesin S; containing the literals
z; and Z;, respectively. Since Z is a 1-optimal assignment, each variable z; must satisfy the following

eguation.
3

2
Summing thisinequality over all the variables, and using

ZP]_,]' = ZNl’j = W(Sl),
ji=1 ji=1

1 1 3
5P = 5P+ 5N+ 5o, < 0.

sz’j - QW(SQ)’
ji=1

ZNOJ - QW(So),
ji=1

we obtain the following inequality:
W(S2) + W(S1) > 3W(So).

This immediately implies that the total weight of the unsatisfied clauses at this local optimum is ho more
than 1/4 timesthetotal weight of all the clauses. Thus, thisalgorithm ensures aperformanceratioof 4/3. B

Remark 9 The same result can be achieved by using the oblivious weight function, and instead modifying
the distance function so that it corresponds to distancesin a hypercube augmented by edges between nodes
whose addresses are complement of each other.
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6.3 Generalizationto MAX k-SAT

We can also design a non-obliviousweight function for MAX k-SAT such that a 1-local strategy ensures a
performance ratio of 2* /(2% — 1). Theweight function F will be of theform F = 35 ¢,W (S;) wherethe
coefficients ¢;'s will be specified later.

Theorem 9 Non-oblivious 1-local search achieves a performanceratio of 2F /(2% — 1) for MAX k-SAT.

Proof: Again, without loss of generality, we will assume that the variables have been renamed so that
each unnegated literal is assigned true under the current truth assignment. Thusthe set S; isthe set of clauses
with 7 unnegated literals.

LetA; =¢, —c;_; andlet g denote the change in the current weight when we flip the value of z;, that
is, setittoO. Itiseasy to verify the followi ng equation:

0F

2
92 Ay Py + Z(AiNi—l,j —Ai_1P_1;) + ANy )
j

i=k
Thuswhen the a gorithm terminates, we know that % <0,forl <7 < n. Summing over al values of
j.andusingthefact Y37_, P ; = sW(S;)and Y7_; N, ; = (k — )W (S;) we get the following inequality.

kAW (S)) + 22: (iD; — (k — ) A )W (S;) > kAW (So). )

% 1

We now determine the values of A;’s such that the coefficient of each term on the left hand sideis unity.

It can be verified that
S )
A= , .
(k—1+ 1)(:1) =0 \J

achieves thisgoal. Thus the coefficient of W (.S,) on the right hand side of equation (2) is 2* — 1. Clearly,
the weight of the clauses not satisfied is bounded by 1/2* times the total weight of al the clauses. It is
worthwhileto note that thisis regardless of the value chosen for the coefficient ¢,. [ |

7 Local Search for CSP and MAX SNP

We now introduce aclass of constraint sati sfaction problems such that the problemsin MAX SNP are exactly
equivaent to the problems in this class. Furthermore, every problem in this class can be approximated to
within a constant factor by a non-obliviouslocal search algorithm.

7.1 Constraint Satisfaction Problems

Theconnection between the syntactic description of optimization problemsand their approximability through
non-obliviouslocal search is made via a problem called MAX k-CSP which captures all the problemsin
MAX SNP as a special case.

Definition 18 (k-ary Constraint) Let Z = {z,..., z,} be a set of boolean variables. A k-ary constraint
onZisC = (V;P), whereV isasizek subset of Z, and P : {T, F}* — {T, F} isa k-ary boolean
predicate.

Definition 19 (MAX k-CSP) Given a collection C4, ..., C,,, of weighted k-ary constraints over the vari-
ablesZ = {z,..., z,},theMAX k-CSP problemisto find a truth assignment sati sfying a maximum wei ght
sub-collection of the constraints.
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Thefollowing theorem shows that MAX k-CSP problemisa“universal” MAX SNP problem, in that it
contains as specia cases al problemsin MAX SNP.

Theorem 10
a) For fixed &, MAX k-CSP € MAX SNP.

b) Let IT ¢ MAX SNP. Then, for some constant k&, IT is a MAX k-CSP problem. Moreover, the k-CSP
instance corresponding to any instance of this problem can be computed in polynomial time.

Proof: The proof of part (b) isimplicitin Theorem 1 in [23], and so we concentrate on proving part (a).
Our goal isto obtain a representation of the k-CSP problem in the MAX SNP syntax:

mSaX|{:v | ®(Z,S5,2)}.

The input structure isZ = (Z U {T, F} U MAX; {ARG, EVAL}), where Z = {z,..., z,}, MAX contains
the integers [1, max{k, n, m}], the predicate ARG encodes the sets V;, and the predicate EVAL encodes the
predicates P;, as described bel ow.

e ARG(r,s, z) is 3-ary predicate which is trueif and only if the rth argument of C, isthe variable z;,
forl<r<k1<s<m,andl <t <n.

e EVAL(S,v1,...,v;) iSa(k 4 1)-ary predicate whichistrueif and only if P;(vy,...,v;) evaluatesto
true, for1 < s <manddlv; € {T, F}.

The structure S isdefined as (Z; { TRUE} ), where TRUE is a unary predicate which denotes an assignment of
truth values to the variablesin Z. The vector z has &£ + 1 components which will be called z4, .. ., z; and
s, for convenience. Theintentionisthat the z;'s refer to the arguments of the sth constraint.

All that remains is to specify the quantifier-free formula &. The basic ideais that ®(Z, S, z) should
evaluate to trueif and only if the following two conditionsare satisfied:

e the arguments of the constraint C, are given by thevariablesz, .. ., z;, in that order; and,

¢ thevaluesgivento thesevariablesunder thetruth assignment specified by .S are such that the constraint
issatisfied.

Theformula® isgivenby thefollowing expression, with thetwo sub-formul as ensuring thesetwo conditions.

(/k\ ARG(r,s,xT)) A ( V (EVAL(S,vl, cen V) A (/k\ v, & TRUE(zT))))

r=1 Vi, v €{T,F} r=1

It is easy to see that the first sub-formula has the desired effect of checking that the z,’s correspond to the
arguments of C,. The second sub-formula considers al possible truth assignment to these & variables, and
checks that the particular set of values assigned by the structure S will make P, evaluateto true.

For a fixed structure .S, there is exactly one choice of z per constraint that could make & evaluate to
true, and this happensif and only if that constraint is satisfied. Thus, the value of the solution given by any
particular truth assignment structure S is exactly the number of constraints that are satisfied. This shows
that the MAX SNP problem always has the same value as intended in the k-CSP problem.

Finally, there are still a few things which need to be checked to ensure that thisis a valid MAX SNP
formulation. Notice that al the predicates are of bounded arity and the structures consist of a bounded
number of such predicates, i.e., independent of theinput size which is given by max. Further, athough the
length of the formulais exponential in &, it isindependent of the input. [ |

19



7.2 Non-ObliviousL ocal Search for MAX k-CSP

A suitable generadization of the non-abliviouslocal search algorithm for MAX k-SAT yields the following
result.

Theorem 11 A non-oblivious 1-local search algorithmhas performanceratio 2* for MAX k-CSP.

Proof: We use an approach similar to the one used in the previous section to design a non-oblivious
weight function F for the weighted version of the MAX k-CSP problem such that a 1-local agorithm yields
2% performance ratio to this problem.

We consider only the constraints with at least one satisfying assignment. Each such constraint can be
replaced by amonomial whichisthe conjunction of some & literal ssuch that when the monomial evaluatesto
true the corresponding literal assignment represents a satisfying assignment for the constraint. Furthermore,
each such monomial has precisely one satisfying assignment. We assign to each monomial the weight of
the constraint it represents. Thusany assignment of variableswhich satisfies monomials of total weight W,
also satisfies constraintsin the original problem of total weight Wy.

Let S; denote the monomias with : true literals, and assume that the weight function F is of the form
SF , e;W(S;). Thus, assuming that the variables have been renamed so that the current assignment gives
value true to each variable, we know that for any variable z;, % is given by egquation (1). As before, using
the fact that for any 1-optimal assignment, % < 0forl1 < j < n,andsumming over all values of 5, we
can write the following inequality. ’

k—1
AW (So) + > (k= 9)Asp1 — i)W (S;) < kAW(Sy) . (3)
=2
We now determine the values of A;’s such that the coefficient of each term on the left hand side is unity. It
can be verified that

achievesthis goal. Thusthe coefficient of W (.S},) on theright hand side of equation (1) is2* — 1. Clearly,

the total weight of clauses satisfied is at least 1/2* times the total weight of all the clauses with at least one

sati sfiable assignment. [ |
We conclude the following theorem.

Theorem 12 Every optimization problem IT € MAX SNP can be approximated to within some constant
factor by a (uniform) non-oblivious 1-local search algorithm,i.e.,

MAX SNP C NoN-OBLIVIOUS GLO.

For a problemexpressible as k-CSP, the performanceratiois at most 2*.

8 Non-ObliviousversusObliviousGLO

In thissection, we show that there exist problemsfor which no constant factor approximation can be obtai ned
by any é-local search algorithm with oblivious weight function, even when we alow ¢ to grow with the
input size. However, asimple 1-loca search agorithm using an appropriate non-oblivious weight function
can ensure a constant performance ratio.
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81 MAXZ2-CSP

The first problem is an instance of MAX 2-CSP where we are given a collection of monomials such that
each monomial isan “and” of precisaly two literals. The objectiveisto find an assignment to maximize the
number of monomials satisfied.

We show an instance of this problem such that for every é = o(n), there exists an instance one of whose
local optimahas value that is a vanishingly small fraction of the global optimum.

Theinput instance consistsof adisjoint union of two setsof monomials, say I'; and I',, defined as below:

r, = | @Az,
1<i<j<n

r, = U U (z; A z;).

1<i<s i<j<n

Clearly, T4| = (2), and T, = né — (*t*). Consider thetruth assignment Z = (1,1,...,1). It satisfies
all monomiasin I'; but none of the monomiasinI';. We claim that this assignment is §-optimal with
respect to the oblivious weight function. To see this, observe that complementing the value of any p < §
variableswill unsatisfy at least 6p/2 monomialsinT'; for any § = o(n). On the other hand, thiswill satisfy
precisely (8) monomialsinT';. Forany p < 6, wehave (é6p)/2 > (£), and so Z isaé-local optimum.

The optimal assignment on the other hand, namely Zopr = (0,0,...,0), satisfiesall monomialsinT;.
Thus, for § < n/2, the performance ratio achieved by any §-local algorithmisnomorethan (%) /(né — (°t1))
which asymptotically diverges to infinity for any § = o(n). We have already seen in Section 7 that a 1-
local non-ablivious algorithm ensures a performance ratio of 4 for this problem. Since this problemisin
MAX SNP, we abtain the following theorem.

Theorem 13 There exist problemsin MAX SNP such that for § = o(n), no §-local obliviousalgorithmcan
approximate them to within a constant performanceratio, i.e.,

MAX SNP ¢ OBLIVIous GLO.

8.2 Vertex Cover

Ausidllo and Protasi [4] have shown that VERTEX COVER does not belong to the class GLO and, hence,
there does not exist any constant § such that an oblivious é-local search algorithm can compute a constant
factor approximation. In fact, their example can be used to show that for any ¢ = o(n), the performance
ratio ensured by é-local search asymptotically diverges to infinity. However, we show that there exists a
rather simple non-abliviousweight function which ensures a factor 2 approximationviaa 1-local search. In
fact, the agorithm simply enforces the behavior of the standard approximation algorithm which iteratively
buildsa vertex cover by simply including both end-points of any currently uncovered edge.

We assume that the input graph G is given as a structure (V, { E}) where V' is the set of vertices and
E C V x V encodes the edges of the graph. Our solution is represented by a 2-ary predicate M which
isiteratively constructed so as to represent a maximal matching. Clearly, the end-points of any maximal
matching constitute a valid vertex cover and such a vertex cover can be at most twice as large as any other
vertex cover inthe graph. Thus M isan encoding of the vertex cover computed by the algorithm.

The algorithm startswith M initialized to the empty relation and at each iteration, at most one new pair
isincluded init. The non-obliviousweight function used is as bel ow:

FI,M) = Z [®1(z,v,2) — 28s(z,y,2) — B3(2, 9, 2)],

(z,y,z)eVe
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where
'1’1(33,.%2) = (M($,y)/\E($,y)/\($22)),
®:(2,9,2) = (M(z,9) A M(z,2)),
ég(x,y,z) = (M($7y)/\E($7y))

Let M encode avalid matching in the graph G. We make the following observations.

e Any relation M’ obtained from M by either deleting an edge from it, or including an edge which
is incident on an edge of M, or including a non-existent edge, has the property that 7 (Z, M') <
F(Z,M). Thusin al-loca search from M, we will never move to arelation M’ which does not
encode avalid matching of G.

¢ On the other hand, if arelation M’ corresponds to the encoding of a matching in G which is larger
than the matching encoded by M, then 7(Z, M') > F(Z, M ). Thusif M does not encode amaximal
matching in GG, there always exist ardation in its 1-neighborhood of larger weight than itself.

These two observations, combined with the fact that we start with a valid initial matching (the empty
matching), immediately alow us to conclude that any 1-optimal relation M always encodes a maximal
matching in G. We have established the following.

Theorem 14 A 1-local search algorithm using the above non-oblivious weight function achieves a perfor-
mance ratio of 2 for the VERTEX COVER problem.

Theorem 15 GLO isa strict subset of NON-OBLIVIOUS GLO.

Asan aside, it can be seen that this algorithm has the same performance starting with an arbitrary initial
solution. Thisisbecausefor any relation M not encoding a matching of theinput graph, deleting one of the
violating members strictly increases 7 (Z, M).

9 TheTraveling Salesman Problem

TheTSP(1,2) problemisthetraveling salesman problem restricted to complete graphswhereall edgeweights
are either 1 or 2; clearly, this satisfies the triangle inequality. Papadimitriou and Yannakakis [24] showed
that this problemis hard for MAX SNP. The natural weight function for TSP(1,2), that is, the weight of the
tour, can be used to show that a 4-local algorithmyieldsa 3/2 performance ratio. The agorithm startswith
an arbitrary tour and in each iteration, it checks if there exist two disjoint edges (a, b) and (¢, d) on the tour
such that deleting them and replacing them with the edges («, ¢) and (b, d) yieldsatour of lesser cost.

Theorem 16 A 4-local search algorithmusing the oblivious weight function achieves a 3/2 performance
ratio for TSP(1,2).

Proof: Let C' bea4-optimal solution and let 7 be a permutation such that the verticesin C' occur inthe
order v, , s, ..., v, . Consider any optimal solution O. With each unit cost edge e in O, we associate a
unit cost edge e’ in C as follows. Let e = (v,,,v,,) Wheres < j. If j = 7+ 1 thene’ = e. Otherwise,
consider the edges e; = (vy,, ¥r,,,) aNd e3 = (vy,,v,,,,) ON C. We claim either e; or e, must be of unit
cost. Suppose not, then the tour ¢’ which is obtained by simply deleting both e, and e, and inserting the
edgese and f = (vn,,,,vr,,,) has cost at least one less than C. But C' is 4-optimal and thus this is a
contradiction.
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Let U, denotesthe set of unit cost edgesin O and let Uy be the set of unit cost edgesin C which form
the image of U, under the above mapping. Since an edgee’ = (v, , vx,,, ) in Uc can only be the image of
unit cost edges incident on v, in O and since O isatour, there are at most two edgesin U, which map to
e’. Thus|U¢| > |Uo|/2 and hence

cost(0) S |Uo| +2(n — |Uol) S 2
cost(C) ~ |Uol/2 +2(n —|Uol/2) — 3
In fact, the above bound can be shown to be tight.

10 Maximum Independent Setsin Bounded Degree Graphs

The input instance to the maximum independent set problem in bounded degree graphs, denoted MIS-B, is
agraph G such that the degree of any vertex in G isbounded by a constant A. We present an algorithm with
performance ratio (v/8A? + 4A + 1 — 2A + 1)/2 for this problem when A > 10.

Our algorithm usestwo local search algorithmssuch that the larger of thetwo independent sets computed
by these algorithms, gives us the above claimed performance ratio. We refer to these two agorithmsas A,
and A,.

In our framework, the algorithm .A; can be characterized asa3-local agorithm with theweight function
simply being |I| — 3|(I x I)n E|. Thusif we start with I initialized to empty set, it is easy to see that at
each iteration, T will correspond to an independent set in G. A convenient way of looking at this algorithm
is as follows. We define an ¢ « 5 swap to be the process of ddeting ¢ vertices from S and including j
verticesfromtheset V' — S to theset S. In each iteration, the algorithm A; performs either a0 < 5 swap
wherel < j < 3,oral « 2swap. A 0 «— j swap however, can be interpreted as j applicationsof 0 « 1
swaps. Thus the algorithm may be viewed as executinga 0 <« 1 swap or al « 2 swap at each iteration.
The algorithm terminates when neither of these two operationsis applicable.

Let T denote the 3-optimal independent set produced by the algorithm A;. Furthermore, let O be any
optimal independent set and let X = I N O. We make the following useful observations.

e Sincefor novertexinI, a0 < 1 swap can be performed, it implies that each vertex in V' — I must
have at |east oneincoming edgeto I.

e Similarly, sinceno 1 « 2 swaps can be performed, it impliesthat at most |I — X | verticesin O — I
can have precisely one edge cominginto I. Thus |0 — X | — |I — X| = |O| — |I| verticesin O — X
must have at |east two edges entering the set 1.

A rather straightforward consegquence of these two observationsis the following lemma.
Lemma2 Thealgorithm A, has performanceratio (A + 1)/2 for MIS-B.

Proof: The above two observations imply that the minimum number of edges entering I from the
verticesinO — X is|I — X |+ 2(|O| — |I]). Onthe other hand, the maximum number of edges coming out
of theverticesin I to theverticesin O — X isbounded by |I — X |A. Thus we must have

[ = X|A >[I -X|+2(l0] - [1]) .

Rearranging, we get
1, 2 IX(Aa-1
O] = A+1 |0|(A+1)
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which yields the desired result. [ |

This nearly matches the approximation ratio of A /2 dueto Hochbaum [15]. It should be noted that the
above result holds for a broader class of graphs, viz., k-claw free graphs. A graph iscaled k-claw free if
there does not exist an independent set of size k or larger such that all the verticesin the independent set are
adjacent to the same vertex. Lemma 2 appliesto (A + 1)-claw free graphs.

Our next objective is to further improve this ratio by using the algorithm .4, in combination with the
algorithm A,. Thefollowing lemmausesadlightly different counting argument to give an aternative bound
on the approximation ratio of thealgorithm .4; when thereis aconstraint on the size of the optimal solution.

Lemma 3 For anyreal number ¢ < A, thealgorithm.4; hasperformanceratio (A — ¢)/2 for MIS-B when
the optimal valueitselfisno morethan ((A — ¢)|V])/(A + ¢ + 4).

Proof: Asnoted earlier, each vertex in V' — I must have at least one edge coming into the set I and at
least |O| — |I] verticesin O must have at least two edges coming into I. Therefore, the following inequality
must be satisfied:

[I[A > [V] = [I] +[0] - |1] .

Thus|I| > (|V]| + |0])/(A + 2). Finally, observe that

Vi+lol 2

A+2 — A—-c

whenever |O] < (A — ¢)|V|/(A + ¢+ 4). [ |

The above lemma shows that the algorithm .4, yields a better approximation ratio when the size of the
optimal independent set isrelatively small.

Thealgorithm A, issimply the classical greedy algorithm. Thisa gorithm can be conveniently included
in our framework if we use directed local search. If welet N (I) denote the set of neighbors of the vertices
in I, then the weight function is simply |[I[(A + 1) + |V — (I + N(I))| = [(I x I) N E[(A + 1). Itis
not difficult to see that starting with an empty independent set, a 1-local algorithm with directed search on
above weight function simply simulates a greedy algorithm. The greedy a gorithm exploits the situation
when the optimal independent set is relatively large in size. It does so by using the fact that the existence
of alarge independent set in G ensures alarge subset of verticesin G with relatively small average degree.
The following two lemmas characterize the performance of the greedy algorithm.

0]

Lemma4 Suppose there exists an independent set X C V such that the average degree of verticesin X
is bounded by «. Then for any « > 1, the greedy algorithm produces an independent set of size at least
[ X[/(1+ a).

Proof: The greedy agorithm iteratively chooses a vertex of smallest degree in the remaining graph
and then deletes this vertex and all its neighbors from the graph. We examine the behavior of the greedy
by considering two types of iterations. First consider the iterationsin which it picks a vertex outside X .
Suppose in the :th such iteration, it picksavertex in V' — X with exactly k; neighborsin the set X in the
remaining graph. Since each one of these &; vertices must also have at least k; edges incident on them, we
looseat least k2 edgesincident on X . Supposeonly p suchiterationsoccur andlet > *_, k; = z. We observe
that >7_, k? < a|X|. Secondly, we consider theiterations when the greedy selects avertex in X. Thenwe
do not loose any other verticesin X because X isan independent set. Thusthe total size of the independent
set constructed by the greedy algorithmisat least p + ¢ whereg = | X | — 2.

By the Cauchy-Schwartz inequality, >°%_, k? > z?/p. Therefore, we have (1 + )| X| > z*/p + z.
Rearranging, we obtain that

. . x| 2 2%
> > + - .
I+a)X|—2 " (1+a)|X] " 14+a (14+a)X| 14a

PZ(
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Thus

ves XL, 2
Pre=T T 0ra)X| 1t+a ©
But2¢/(1+ a) < ¢ for a > 1, and theresult follows. [ |

Lemma5 For A > 10 and any non-negativereal number ¢ < 3A —+/8A2 + 4A + 1—1, thealgorithm A,
has performanceratio (A —¢)/2 for MIS-B when the optimal valueitselfisat least (A —¢)|V])/(A+c+4).

Proof: Observe that the average degree of verticesin O isbounded by (|V — O|A/|O]) and thus using
the fact that |O| > (A — ¢)|V|/(A + ¢ + 4), we know that the algorithm .4, computes an independent set
of sizeat least |O|/(1 + o) where o = (4A + 2Ac)/(A —¢),and e > 1 for ¢ > 0. Henceit issufficient to
determine the range of values ¢ can take such that the following inequality is satisfied:

0] < 2 >
> .
l1+a ~ \A-c¢ 01

Substituting the bound on the value of « and rearranging the terms of the equation, yields the following
guadratic equation :

> — (6A —2)c+A*—10A > 0.
Since ¢ must be strictly bounded by A, the above quadratic equation is satisfied for any choice of

c<3A —+/8A2+4A+1-1if A > 10. |
Combining the results of Lemmas 3 and 5 and choosing the largest allowable value for ¢, we get the
following result.

Theorem 17 An approximation algorithm which simply outputs the larger of the two independent sets
computed by the algorithms.4; and A,, has performanceratio (1/8A2 + 4A + 1 — 2A + 1)/2 for MIS-B.

The performance ratio claimed above is essentially A/2.414. This improves upon the long-standing
approximation ratio of A /2 dueto Hochbaum [15], when A > 10. However, very recently, there has been
a flurry of new results for this problem. Berman and Furer [6] have given an agorithm with performance
ratio (A + 3)/5 + € when A iseven, and (A + 3.25)/5 + ¢ for odd A, where e > 0 is afixed constant.
Halldorsson and Radhakrishnan [14] have shown that algorithm .4; when run on k-cliquefree graphs, yields
an independent set of size at least 2n/(A + k). They combine this algorithm with a clique-removal based
scheme to achieve aperformance ratio of A/6(1 + o(1)).

In conclusion, note that Khanna, Motwani and Vishwanathan [19] have recently shown that a semi-
definite programming technique can be used to obtaina(A loglog A)/(log A )-approximation algorithm for
this problem.
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