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Abstract

We attempt to reconcile the two distinct views of approximation classes: syntactic and computational.
Syntactic classes such as MAX SNP permit structural results and have natural complete problems, while
computational classes such as APX allow us to work with classes of problems whose approximability is
well-understood. Our results provide a syntactic characterization of computational classes, and give a
computational framework for syntactic classes.

We compare the syntactically defined class MAX SNP with the computationally defined class APX,
and show that every problem in APX can be “placed” (i.e., has approximation preserving reduction
to a problem) in MAX SNP. Our methods introduce a simple, yet general, technique for creating
approximation-preserving reductions which show that any “well” approximable problem can be reduced
in an approximation-preserving manner to a problem which is hard to approximate to corresponding
factors. The reduction then follows easily from the recent non-approximability results for MAX SNP-
hard problems. We demonstrate the generality of this technique by applying it to other classes such as
RMAX(2) and MIN F+�2(1) which have the clique problem and the set cover problem, respectively, as
complete problems.

The syntactic nature of MAX SNP was used by Papadimitriou and Yannakakis [23] to provide approx-
imation algorithms for every problem in the class. We provide an alternate approach to demonstrating
this result using the syntactic nature of MAX SNP. We develop a general paradigm, non-oblivious
local search, useful for developing simple yet efficient approximation algorithms. We show that such
algorithms can find good approximations for all MAX SNP problems, yielding approximation ratios
comparable to the best-known for a variety of specific MAX SNP-hard problems. Non-oblivious local
search provably out-performs standard local search in both the degree of approximation achieved and
the efficiency of the resulting algorithms.
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1 Introduction

The approximability of NP optimization (NPO) problems has been investigated in the past via the definition
of two different types of problem classes: syntactically-defined classes such as MAX SNP (the class of
NPO problems expressible as bounded-arity constraint satisfaction problems) and computationally-defined
classes such as APX (the class of NPO problems to which a constant factor approximation can be found
in polynomial time); see Section 2 for formal definitions. The former is useful for obtaining structural
results and has natural complete problems, while the latter allows us to work with classes of problems whose
approximability is completely determined. We attempt to develop linkages between these two views of
approximation problems and thereby obtain new insights about both types of classes. We show that a natural
generalization of MAX SNP renders it identical to the class APX. This further validates Papadimitriou and
Yannakakis’s definition of MAX SNP as providing a structural basis to the study of approximability. As a
side-effect, we resolve the open problem of identifying complete problems for MAX NP. Our techniques
extend to a generic theorem that can be used to create an approximation hierarchy. We also develop a generic
algorithmic paradigm which is guaranteed to provide good approximations for MAX SNP problems, and
may also have other applications.

1.1 Background and Motivation

A wide variety of classes are defined based directly on the polynomial-time approximability of the problems
contained within, e.g., APX (constant-factor approximable problems), PTAS (problems with polynomial-
time approximation schemes), and FPTAS (problems with fully-polynomial-time approximation schemes).
The advantage of working with classes defined using approximability as the criterion is that it allows us to
work with problems whose approximability is well-understood. Crescenzi and Panconesi [8] have recently
also been able to exhibit complete problems for such classes, particularly APX. Unfortunately such complete
problems seem to be rare and artificial, and do not seem to provide insight into the more natural problems
in the class. Research in this direction has to find approximation-preserving reductions from the known
complete but artificial problems in such classes to the natural problems therein, with a view to understanding
the approximability of the latter.

The second family of classes of NPO problems that have been studied are those defined via syntactic
considerations, based on a syntactic characterization of NP due to Fagin [10]. Research in this direction,
initiated by Papadimitriou and Yannakakis [23], and followed by Panconesi and Ranjan [22] and Kolaitis
and Thakur [20], has led to the identification of approximation classes such as MAX SNP, RMAX(2), and
MIN F+�2(1). The syntactic prescription in the definition of these classes has proved very useful in the
establishment of complete problems. Moreover, the recent results of Arora, Lund, Motwani, Sudan, and
Szegedy [2] have established the hardness of approximating complete problems for MAX SNP to within
(specific) constant factors unless P = NP. It is natural to wonder why the hardest problems in this syntactic
sub-class of APX should bear any relation to all of NP.

Though the computational view allows us to precisely classify the problems based on their approxima-
bility, it does not yield structural insights into natural questions such as: Why certain problems are easier
to approximate than some others? What is the canonical structure of the hardest representative problems
of a given approximation class? and, so on. Furthermore, intuitively speaking, this view is too abstract to
facilitate identification of, and reductions to establish, natural complete problems for a class. The syntactic
view, on the other hand, is essentially a structural view. The syntactic prescription gives a natural way
of identifying canonical hard problems in the class and performing approximation-preserving reductions to
establish complete problems.

Attempts at trying to find a class with both the above mentioned properties, i.e., natural complete problems
and capturing all problems of a specified approximability, have not been very successful. Typically the focus
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has been to relax the syntactic criteria to allow for a wider class of problems to be included in the class.
However in all such cases it seems inevitable that these classes cannot be expressive enough to encompass
all problems with a given approximability. This is because each of these syntactically defined approximation
classes is strictly contained in the class NPO; the strict containment can be shown by syntactic considerations
alone. As a result if we could show that any of these classes contains all of P, then we would have separated
P from NP. We would expect that every class of this nature would be missing some problems from P, and
this has indeed been the case with all current definitions.

We explore a different direction by studying the structure of the syntactically defined classes when we
look at their closure under approximation-preserving reductions. The idea of looking at the closure of a
class is implicit in the work of Papadimitriou and Yannakakis [23] who state that: minimization problems
will be “placed” in the classes through L-reductions to maximization problems. The advantage of looking
at the closure of a set is that it maintains the complete problems of the set, while managing to include all
of P into the closure (for problems in P, the reduction is to simply use a polynomial time algorithm to
compute an exact solution). It now becomes interesting, for example, to compare the closure of MAX SNP
(denoted MAX SNP) with APX. A positive resolution, i.e., MAX SNP = APX, would immediately imply
the non-existence of a PTAS for MAX SNP-hard problems, since it is known that PTAS is a strict subset of
APX, if P 6= NP. On the other hand, an unconditional negative result would be difficult to obtain, since it
would imply P 6= NP.

Here we resolve this question in the affirmative. The exact nature of the result obtained depends
upon the precise notion of an approximation preserving reduction used to define the closure of the class
MAX SNP. The strictest notion of such reductions available in the literature are the L-reductions due
to Papadimitriou and Yannakakis [23]. We work with a slight extension of the reduction, which we callE-reductions. Using such reductions to define the class MAX SNP we show that this equals APX-PB, the
class of all polynomially bounded NP optimization problems which are approximable to within constant
factors. By using slightly looser definitions of approximation preserving reductions (and in particular the
PTAS-reductions of Crescenzi et al [9]) this can be extended to include all of APX into MAX SNP. We then
build upon this result to identify an interesting hierarchy of such approximability classes. An interesting
side-effect of our results is the positive answer to the question of Papadimitriou and Yannakakis [23] about
whether MAX NP has any complete problems.

The syntactic view seems useful not only in obtaining structural complexity results but also in developing
paradigms for designing efficient approximation algorithms. This was demonstrated first by Papadimitriou
and Yannakakis [23] who show approximation algorithms for every problem in MAX SNP. We further
exploit the syntactic nature of MAX SNP to develop another paradigm for designing good approximation
algorithms for problems in that class and thereby provide an alternate computational view of it. We
refer to this paradigm as non-oblivious local search, and it is a modification of the standard local search
technique [25]. We show that every MAX SNP problem can be approximated to within constant factors by
such algorithms. It turns out that the performance of non-oblivious local search is comparable to that of the
best-known approximation algorithms for several interesting and representative problems in MAX SNP. An
intriguing possibility is that this is not a coincidence, but rather a hint at the universality of the paradigm or
some variant thereof.

Our results are related to some extent to those of Ausiello and Protasi [4]. They define a class GLO (for
Guaranteed Local Optima) of NPO problems which have the property that for all locally optimum solutions,
the ratio between the value of the global and the local optimum is bounded by a constant. It follows that
GLO is a subset of APX, and it was shown that it is in fact a strict subset. We show that a MAX SNP problem
is not contained in GLO, thereby establishing that MAX SNP is not contained in GLO. This contrasts with
our notion of non-oblivious local search which is guaranteed to provide constant factor approximations for
all problems in MAX SNP. In fact, our results indicate that non-oblivious local search is significantly more
powerful than standard local search in that it delivers strictly better constant ratios, and also will provide
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constant factor approximations to problems not in GLO. Independently of our work, Alimonti [1] has
used a similar local search technique for the approximation of a specific problem not contained in GLO or
MAX SNP.

1.2 Summary of Results

In Section 2, we present the definitions required to state our results, and in particular the definitions of an E-
reduction, APX, APX-PB, MAX SNP and MAX SNP. In Section 3, we show that MAX SNP = APX-PB.
A generic theorem which allows to equate the closure of syntactic classes to appropriate computational
classes is outlined in Section 4; we also develop an approximation hierarchy based on this result.

The notion of non-oblivious local search and NON-OBLIVIOUS GLO is developed in Section 5. In
Section 6, we illustrate the power of non-obliviousness by first showing that oblivious local search can
achieve at most the performance ratio 3=2 for MAX 2-SAT, even if it is allowed to search exponentially
large neighborhoods; in contrast, a very simple non-oblivious local search algorithm achieves a performance
ratio of 4=3. We then establish that this paradigm yields a 2k=(2k � 1) approximation to MAX k-SAT. In
Section 7, we provide an alternate characterization of MAX SNP via a class of problems called MAX k-CSP.
It is shown that a simple non-oblivious algorithm achieves the best-known approximation for this problem,
thereby providing a uniform approximation for all of MAX SNP. In Section 8, we further illustrate the power
of this class of algorithms by showing that it can achieve the best-known ratio for a specific MAX SNP
problem and for VERTEX COVER (which is not contained in GLO). This implies that MAX SNP is not
contained in GLO, and that GLO is strict subset of NON-OBLIVIOUS GLO. In Section 9, we apply it to
approximating the traveling salesman problem. Finally, in Section 10, we apply this technique to improving
a long-standing approximation bound for maximum independent sets in bounded-degree graphs.

2 Preliminaries and Definitions

Given an NPO problem � and an instance I of �, we use jIj to denote the length of I and OPT (I) to
denote the optimum value for this instance. For any solution S to I, the value of the solution, denoted
by V (I; S), is assumed to be a polynomial time computable function which takes positive integer values
(see [7] for a precise definition of NPO).

Definition 1 (Error) Given a solutionS to an instance I of an NPO problem �, we define its error E(I; S)
as E(I; S) = max� V (I; S)OPT (I) ; OPT (I)V (I; S) �� 1:

Notice that the above definition of error applies uniformly to the minimization and maximization problems
at all levels of approximability.

Definition 2 (Performance Ratio) An approximation algorithmA for an optimization problem � has per-
formance ratio R(n) if, given an instance I of � with jIj = n, the solutionA(I) satisfiesmax�V (I; A(I))OPT (I) ; OPT (I)V (I; A(I))� � R(n):
A solution of value within a multiplicative factor r of the optimal value is referred to as an r-approximation.

The performance ratio for A is R if it always computes a solution with error at most R� 1.
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2.1 E-reductions

We now describe the precise approximation preserving reduction we will use in this paper. This re-
duction, which we call the E-reduction, is essentially the same as the L-reduction of Papadimitriou and
Yannakakis [23] and differs from it in only one relatively minor aspect.

Definition 3 (E-reduction) A problem � E-reduces to a problem �0 (denoted � /E �0) if there exist
polynomial time computable functions f , g and a constant � such that� f maps an instance I of � to an instance I 0 of �0 such that OPT (I) and OPT (I 0) are related by a

polynomial factor i.e. there exists a polynomial p(n) such that OPT (I0) � p(jIj)OPT(I).� g maps solutionsS 0 of I 0 to solutions S of I such thatE(I; S) � �E(I 0; S0):
Remark 1 Among the many approximation preserving reductions in the literature, theL-reduction appears
to be the strictest. The E-reduction appears to be slightly weaker (in that it allows polynomial scaling
of the problems), but is stricter than any of the other known reductions. Since all the reductions given in
this paper are E-reductions, they would also qualify as approximation-preserving reductions under most
other definitions and in particular they fit the definitions of F -reductions and P -reductions of Crescenzi and
Panconesi [8].

Remark 2 Having � /E �0 implies that � is as well approximable as �0; in fact, an E-reduction is an
FPTAS-preserving reduction. An importantbenefit is that this reduction can be applied uniformlyat all levels
of approximability. This is not the case with the other existing definitions of FPTAS-preserving reduction in
the literature. For example, the FPTAS-preserving reduction (F -reduction) of Crescenzi and Panconesi [8]
is much more unrestricted in scope and does not share this important property of the E-reduction. Note
that Crescenzi and Panconesi [8] showed that there exists a problem �0 2 PTAS such that for any problem� 2 APX, � /F �0. Thus, there is the undesirable situation that a problem � with no PTAS has a
FPTAS-preserving reduction to a problem �0 with a PTAS.

Remark 3 The L-reduction of Papadimitriou and Yannakakis [23] enforces the condition that the optima of
an instanceI of � be linearly related to the optima of the instanceI 0of �0 to which it is mapped. This appears
to be an unnatural restriction considering that the reduction itself is allowed to be an arbitrary polynomial
time computation. This is the only real difference between their L-reduction and our E-reduction, and anE-reduction in which the linearity relation of the optimas is satisfied is anL-reduction. Intuitively, however,
in the study of approximability the desirable attribute is simply that the errors in the corresponding solutions
are closely (linearly) related. The somewhat artificial requirement of a linear relation between the optimum
values precludes reductions between problems which are related to each other by some scaling factor. For
instance, it seems desirable that two problems whose objective functions are simply related by any fixed
polynomial factor should be inter-reducible under any reasonable definition of an approximation-preserving
reduction. Our relaxation of the L-reduction constraint is motivated precisely by this consideration.

Let C be any class of NPO problems. Using the notion of an E-reduction, we define hardness and
completeness of problems with respect C, as well its closure and polynomially-bounded sub-class.

Definition 4 (Hard and Complete Problems) A problem �0 is said to be C-hard if for all problems � 2 C,
we have � /E �0. A C-hard problem � is said to be C-complete if in addition � 2 C.
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Definition 5 (Closure) The closure of C, denoted by C, is the set of all NPO problems � such that � /E �0
for some �0 2 C.

Remark 4 The closure operation maintains the set of complete problems for a class.

Definition 6 (Polynomially Bounded Subset) The polynomially bounded subset of C, denoted C-PB, is the
set of all problems � 2 C for which there exists a polynomial p(n) such that for all instances I 2 �,OPT (I) � p(jIj).
2.2 Computational and Syntactic Classes

We first define the basic computational class APX.

Definition 7 (APX) An NPO problem � is in the class APX if there exists a polynomial time algorithm A
for � with performance ratio bounded by some constant c.

The class APX-PB consists of all polynomially bounded NPO problems which can be approximated
within constant factors in polynomial time.

If we let F -APX denote the class of NPO problems that are approximable to within a factor F , then
we obtain a hierarchy of approximation classes. For instance, poly-APX and log-APX are the classes of
NPO problems which have polynomial time algorithms with performance ratio bounded polynomially and
logarithmically, respectively, in the input length. More precise versions of these definitions are provided in
Section 4.

Let us briefly review the definition of some syntactic classes.

Definition 8 (MAX SNP and MAX NP [23]) MAX SNP is the class of NPO problems expressible as find-
ing the structure S which maximizes the objective functionV (I; S) = jf~x j �(I; S; ~x)gj ;
where I = (U ;P) denotes the input (consisting of a finite universe U and a finite set of bounded arity
predicates P), S is a finite structure, and � is a quantifier-free first-order formula. The class MAX NP is
defined analogously except the objective function isV (I; S) = jf~x j 9~y;�(I; S; ~x; ~y)gj :

A natural extension is to associate a weight with every tuple ~x; the modified objective is to find an S
which maximizes V (I; S) =P~xw(~x)�(I; S; ~x), where w(~x) denotes the weight associated with the tuple~x.

Example 1 (MAX k-SAT) The MAX k-SAT problem is: given a collection of m clauses on n boolean
variables where each (possiblyweighted) clause is a disjunctionof precisely k literals, find a truth assignment
satisfying a maximum weight collection of clauses. For any fixed integer k, MAX k-SAT belongs to the
class MAX SNP. The results of Papadimitriou and Yannakakis [23] can be adapted to show that for k � 2,
MAX k-SAT is complete under E-reductions for the class MAX SNP.

Definition 9 (RMAX(k) [22]) RMAX(k) is the class of NPO problems expressible as finding a structure S
which maximizes the objective functionV (I; S) = ( jf~x j S(~x)gj if 8~y;�(I; S; ~y)0 otherwise

where S is a single predicate and �(I; S; ~y) is a quantifier-free CNF formula in which S occurs at most k
times in each clause and all its occurrences are negative.
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The results of Panconesi and Ranjan [22] can be adapted to show that MAX CLIQUE is complete underE-reductions for the class RMAX(2).

Definition 10 (MIN F+�2(k) [20]) MIN F+�2(k) is the class of NPO problems expressible as finding a
structure S which minimizes the objective functionV (I; S) = ( jf~x : S(~x)gj if 8~x; 9~y;�(I; S; ~x; ~y)0 otherwise

where S is a single predicate, �(I; S; ~y) is a quantifier-free CNF formula in which S occurs at most k times
in each clause and all its occurrences are positive.

The results of Kolaitis and Thakur [20] can be adapted to show that SET COVER is complete underE-reductions for the class MIN F+�2(1).
3 MAX SNP Closure and APX-PB

In this section, we will establish the following theorem and examine its implications. The proof is based on
the results of Arora et al [2] on efficient proof verifications.

Theorem 1 MAX SNP = APX-PB.

Remark 5 The seeming weakness that MAX SNP only captures polynomially bounded APX problems
can be removed by using looser forms of approximation-preserving reduction in defining the closure. In
particular, Crescenzi and Trevisan [9] define the notion of a PTAS-preserving reduction under which APX =
APX-PB. Using their result in conjunction with the above theorem, it is easily seen that MAX SNP = APX.
This weaker reduction is necessary to allow for reductions from fine-grained optimization problems to
coarser (polynomially-bounded) optimization problems (cf. [9]).

The following is a surprising consequence of Theorem 1.

Theorem 2 MAX NP = MAX SNP.

Papadimitriou and Yannakakis [23] (implicitly) introduced both these closure classes but did not con-
jecture them to be the same. It would be interesting to see if this equality can be shown independent of the
result of Arora et al [2]. We also obtain the following resolution to the problem posed by Papadimitriou and
Yannakakis [23] of finding complete problems for MAX NP.

Theorem 3 MAX SAT is complete for MAX NP.

The following sub-sections establish that MAX SNP � APX-PB. The idea is to first E-reduce any
minimization problem in APX-PBto a maximization problem in therein, and thenE-reduce any maximization
problem in APX-PB to a specific complete problem for MAX SNP, viz., MAX 3-SAT. Since anE-reduction
forces the optimas of the two problems involved to be related by polynomial factors, it is easy to see that
MAX SNP � APX-PB. Combining these two facts, we obtain Theorem 1.
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3.1 Reducing Minimization to Maximization

Observe that the fact that � belongs to APX implies the existence of an approximation algorithm A and a
constant c such that OPT (I)c � V (I; A(I)) � c� OPT (I):
Henceforth, we will usea(I) to denoteV (I; A(I)). We first reduce any minimization problem� 2 APX-PB
to a maximization problem �0 2 APX-PB, where the latter is obtained by merely modifying the objective
function for �, as follows. Let �0 have the objective functionV 0(I; S) = max f1; (c+ 1)a(I)� cV (I; S)g ;
for all instances I and solutions S for �. Clearly, V 0(I; S) takes only positive values. To ensure thatV 0(I; S) is integer-valued, we can assume without loss of generality, that c is an integer (a real-valued
performance ratio can always be rounded up to the next integer). It can be verified that the optimum value
for any instance I of �0 always lies between a(I) and (c + 1)a(I). Thus A is a (c + 1)-approximation
algorithm for �0.

Now given a solution S 0 for instance I of �0 such that it has error �, we want to construct a solution S
for instance I of � such that the error is at most �� for some �. We will show this for � = (c+ 1).

First consider the case when V 0(I; S 0) = 1 i.e. � = a(I)�1. In this case, we simply output the solutionS = A(I). If a(I) = 1 then we are trivially done else we observe thatE(I; S)� (c� 1) � (c+ 1)(a(I)� 1) � �E 0(I; S 0):
On the other hand, if V 0(I; S 0) > 1, we may proceed as follows. If S0 is a �-error solution to the

optimum of �0, i.e., V 0(I; S) � OPT 0(I)1 + � � (1� �)OPT 0(I);
where OPT 0(I) is the optimal value of V 0 for I, we can conclude thatV (I; S) = (c+ 1)a(I)� V 0(I; S)c� (c+ 1)a(I)� OPT 0(I) + � �OPT 0(I)c� c� OPT (I) + � �OPT 0(I)c� OPT (I) + (c+ 1)� OPT (I):
Thus a solution s to �0 with error � is a solution to � with error at most (c+ 1)�, implying an E-reduction
with � = c+ 1.

3.2 NP Languages and MAX 3-SAT

The following theorem, adapted from a result of Arora, Lund, Motwani, Sudan, and Szegedy [2], is critical
to our E-reduction of maximization problems to MAX 3-SAT.

Theorem 4 ([2]) Given a language L 2 NP and an instance x 2 �n, one can compute in polynomial time
an instanceFx of MAX 3-SAT, with the following properties.

1. The formulaFx has m clauses, where m depends only on n.
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2. There exists a constant � > 0, independent of the input x, such that (1��)m clauses ofFx are satisfied
by some truth assignment.

3. If x 2 L, then Fx is (completely) satisfiable.

4. If x 62 L, then no truth assignment satisfies more than (1� �)m clauses of Fx.

5. Given a truth assignment which satisfies more than (1� �)m clauses of Fx, a truth assignment which
satisfiesFx completely (or, alternatively, a witness showing x 2 L) can be constructed in polynomial
time.

Some of the properties above may not be immediately obvious from the construction given by Arora,
Lund, Motwani, Sudan, and Szegedy [2]. It is easy to verify that they provide a reduction with properties
(1), (3) and (4). Property (5) is obtained from the fact that all assignments which satisfy most clauses are
actually close (in terms of Hamming distance) to valid codewords from a linear code, and the uniquely
error-corrected codeword obtained from this “corrupted code-word” will satisfy all the clauses of Fx.

Property (2) requires a bit more care and we provide a brief sketch of how it may be ensured. The idea
is to revert back to the PCP model and redefine the proof verification game. Suppose that the original game
had the properties that for x 2 L there exists a proof such that the verifier accepts with probability 1, and
otherwise, for x 62 L, the verifier accepts with probability at most 1=2. We now augment this game by
adding to the proof a 0th bit which the prover uses as follows: if the bit is set to 1, then the prover “chooses”
to play the old game, else he is effectively “giving up” on the game. The verifier in turn first looks at the 0th
bit of the proof. If this is set, then she performs the usual verification, else she tosses an unbiased coin and
accepts if and only if it turns up heads. It is clear that for x 2 L there exists a proof on which the verifier
always accepts. Also, for x 62 L no proof can cause the verifier to accept with probability greater than 1=2.
Finally, by setting the 0th bit to 0, the prover can create a proof which the verifier accepts with probability
exactly 1=2. This proof system can now be transformed into a 3-CNF formula of the desired form.

3.3 Reducing Maximization to MAX 3-SAT

We have already established that, without loss of generality, we only need to worry about maximization
problems � 2 APX-PB. Consider such a problem �, and let A be a polynomial-time algorithm which
delivers a c-approximation for �, where c is some constant. Given any instance I of �, let p = ca(I) be
the bound on the optimum value for I obtained by running A on input I. Note that this may be a stronger
bound than the a priori polynomial bound on the optimum value for any instance of length jIj. An important
consequence is that p � cOPT (I).

We generate a sequence of NP decision problems Li = fIjOPT(I) � ig for 1 � i � p. Given an
instance I, we create p formulas Fi, for 1 � i � p, using the reduction from Theorem 4, where ith formula
is obtained from the NP language Li.

Consider now the formula F = Vpi=1 Fi that has the following features.� The number of satisfiable clauses of F is exactlyMAX = (1� �)mp+ �mOPT (I);
where � and m are as guaranteed by Theorem 4.� Given an assignment which satisfies (1� �)mp+ �mj clauses of F , we can construct in polynomial
time a solution to I of value at least j. To see this, observe the following: any assignment which
so many clauses must satisfy more than (1 � �)m clauses in at least j of the formulas Fi. Let i be
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the largest index for which this happens; clearly, i � j. Furthermore, by property (5) of Theorem 4,
we can now construct a truth assignment which satisfies Fi completely. This truth assignment can be
used to obtain a solutionS such that V (I; S) � i � j.

In order to complete the proof it remains to be shown that given any truth assignment with error �, i.e.,
which satisfies MAX =(1 + �) clauses of F , we can find a solution S for I with error E(I; S) � �� for
some constant �. We show that this is possible for � = (c2 + c�)=�. The main idea behind finding such a
solution is to use the second property above to find a “good” solution to I using a “good” truth assignment
for F .

Suppose we are given a solution which satisfies MAX =(1 + �) clauses. Since MAX =(1 + �) �(1 � �)MAX and MAX = (1 � �)mp + �mOPT (I), we can use the second feature from above to
construct a solutionS1 such thatV (I; S1) � (1� �)MAX�(1� �)mp�m� (1� �)OPT(I)� �� p� �1� � �1 + c���OPT (I):

Suppose � � (c� 1)�=(c(c+ �)). Let �� = �(1+ c=�); and 
 = ��=(1� ��). Then it is readily seen thatV (I; S1) � OPT (I)1 + 

and that 0 � 
 � �c2 + c�� � �:
On the other hand, if � > (c � 1)�=(c(c + �)), then the error in a solution S2 obtained by running thec-approximation algorithm for � is given byc� 1 � �c2 + c�� � �:
Therefore, choosing � = (c2 + c�)=�; we immediately obtain that the solution with larger value, among S1
and S2, has error at most ��. Thus, this reduction is indeed an E-reduction.

4 Generic Reductions and an Approximation Hierarchy

In this section we describe a generic technique for turning a hardness result into an approximation preserving
reduction.

We start by listing the kind of constraints imposed on the hardness reduction, the approximation class
and the optimization problem. We will observe at the end that these restrictions are obeyed by all known
hardness results and the corresponding approximation classes.

Definition 11 (Additive Problems) An NPO problem � is said to be additive if there exists an operator +
and a polynomial time computable function f such that + maps a pair of instances I1 and I2 to an instanceI1+ I2 such that OPT (I1+ I2) = OPT (I1) +OPT (I2), and f maps a solution s to I1 + I2 to a pair of
solutions s1 and s2 to I1 and I2, respectively, such that V (I1 + I2; s) = V (I1; s1) + V (I2; s2).
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Definition 12 (Downward Closed Family) A family of functions F = ff : Z+ ! Z+g is said to be
downward closed if for all g 2 F and for all constants c (and in particular for all integers c > 1),g0(n) 2 O(g(nc)) implies that g0 2 F . A function g is said to be hard for the family F if for all g0 2 F ,
there exists a constant c such that g0(n) 2 O(g(nc)); the function g is said to be complete for F if g is hard
for F and g 2 F .

Definition 13 (F -APX) For a downward closed family F , the class F -APX consists of all polynomially
bounded optimization problems approximable to within a ratio of g(jIj) for some function g 2 F .

Definition 14 (Canonical Hardness) An NP maximization problem � is said to be canonically hard for the
class F -APX if there exists a transformation T mapping instances of 3-SAT to instances of �, constantsn0 and c, and a gap function G which is hard for the family F , such that given an instance x of 3-SAT onn � n0 variables and N � nc, I = T (x;N) is an instance of � with the following properties.� If x 2 3-SAT, then OPT (I) = N .� If x 62 3-SAT, then OPT (I) = N=G(N).� Given a solution S to I with V (I; S) > N=G(N), a truth assignment satisfying x can be found in

polynomial time.

In the above definition, the transformation T from 3-SAT to � is somewhat special in that one can
specify the size/optimum of the reduced problem and T can produce a mapped instance of the desired size.
This additional property is easily obtained for additive problems, by using sufficient number of additions till
the optimum of the reduced problem is close to the target optimum, and then adding a problem of known
optimum value to the reduced problem.

Canonical hardness for NP minimization problems is analogously defined: OPT (I) = N when the
formula is satisfiable andOPT (I) = NG(N), otherwise. Given any solution with value less thanNG(N),
one can construct a satisfying assignment in polynomial time.

4.1 The Reduction

Theorem 5 If F is a downward closed family of functions, and an additive NPO problem 
 is canonically
hard for the class F -APX-PB, then all problems in F -APX-PB E-reduce to 
.

Proof: Let � be a polynomially bounded optimization problem in F -APX, approximable to within c(:)
by an algorithm A, and let 
 be a problem shown to be hard to within a factor G(:) where G is hard for F .
Let V and V 0 denote the objective functions of � and 
, respectively. We start with the special case where
both � and 
 are maximization problems. We describe the functions f , g and the constant � as required for
an E-reduction.

Let I 2 � be an instance of size n; pick N so that c(n) is O(G(N)). To describe our reduction, we
need to specify the functions f and g. The function f is defined as follows. Let m = V (I; A(I)). For
each i 2 f1; : : : ; mc(n)g, let Li denote the NP-language fIjOPT(I) � ig. Now for each i, we create an
instance �i 2 
 of size N such that if I 2 Li then OPT (�i) is N , and it is N=G(N) otherwise. We definef(I) = � =Pi �i.

We now construct the function g. Given an instance I 2 � and a solution s0 to f(I), we compute a
solution s to I in the following manner. We first use A to find a solution s1. We also compute a second
solution s2 to I as follows. Let j be the largest index such that the solution s0 projects down to a solution s0j
to the instance �j such that V 0(�j; s0j) > N=G(N). This in turn implies we can find a solution s2 to witnessV (I; s2) � j. Our solution s is the one among s1 and s2 that yields the larger objective function value.
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We now show that the reduction is an E-reduction with � = 1 + c(n)=(G(N)� 1).
Let � = OPT (I)=m. Observe thatOPT (I 0) = Nm�� + c(n)G(N) � �G(N)� :

Consider the following two cases:

Case 1 [j � m]: In this case, V (I; s) = m. Since s is a solution to I of error at most (�� 1), it suffices
to argue that the error of s0 as a solution to � is at least (�� 1)=�. We start with the following upper bound
on V (�; s0). V (�; s0) � Nm�1 + c(n)G(N) � 1G(N)� :

Thus the approximation factor achieved by s0 is given byE(�; s0) � 0@Nm ��+ c(n)G(N) � �G(N)�Nm �1 + c(n)G(N) � 1G(N)�1A � 1= (�� 1)� G(N)� 1G(N) + c(n)� 1�= �� 1� :
So in this case s1 (and hence s) is a solution to I with an error of at most ��, if s0 is a solution to � with an
error of �.
Case 2 [j � m]: Let j = 
m. Note that 
 > 1 and that the error of s as a solution to I is (�� 
)=
. We
bound the value of the solution s0 to � asV (�; s0) � Nm�
 + c(n)G(N) � 
G(N)� ;
and its error as E(�; s0) = 0@�+ c(n)G(N) � �G(N)
 + c(n)G(N) � 
G(N) 1A� 1= ��� 

 �0@ 11 + c(n)
(G(N)�1)1A� ��� 

 � 1� :
(The final inequality follows from the fact that 1 + c(n)
(G(N)�1) � 1 + c(n)(G(N)�1) = �.)

Thus in this case also we find that s (by virtue of s2) is a solution to I of error at most �� if s0 is a
solution to � of of error �.

We now consider the more general cases where � and 
 are not both maximization problems. For the
case where both are minimization problems, the above transformation works with one minor change. When
creating �i, the NP language consists of instances (I; i) such that there exists s with V (I; s) � i.
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For the case where � is a minimization problem and 
 is a maximization problem, we first E-reduce �
to a maximization problem �0 and then proceed as before. The reduction proceeds as follows. Since � is a
polynomially bounded optimization problem, we can compute an upper bound on the value of any solutions to an instance I. Let m be such a bound for an instance I. The objective function of �0 on the instanceI is defined as V 0(I; s) = b2m2=V (I; s)c. To begin with, it is easy to verify that � 2 F -APX implies�0 2 F -APX.

Let s be a solution to instance I of � of error �. We will show that s as a solution to instance I of �0
has an error of at least �=2. Assume, without loss of generality, that � 6= 0. ThenV (I; s)� OPT (I) = � OPT (I) � 1:
Multiplying by 2m2=(OPT(I)V (I; s)), we get2m2OPT (I) � 2m2V (I; s) = � 2m2V (I; s) � 2:
This implies that 2m2OPT (I) � 2m2V (I; s) � 1 + 12 � 2m2OPT (I) � 2m2V (I; s)= 1 + �2 � 2m2V (I; s) :
Upon rearranging, V 0(I; s) � 1(1 + �=2) � 2m2OPT (I) � 1� � 1(1 + �=2) � 2m2OPT (I)� :
Thus the reduction from � to �0 is an E-reduction.

Finally, the last remaining case, i.e., � being a maximization problem and 
 being a minimization
problem, is dealt with similarly: we transform � into a minimization problem �0.
Remark 6 This theorem appears to merge two different notions of the relative ease of approximation of
optimization problems. One such notion would consider a problem �1 easier than �2 if there exists an
approximation preserving reduction from �1 to �2. A different notion would regard �1 to be easier than�2 if one seems to have a better factor of approximation than the other. The above statement essentially
states that these two comparisons are indeed the same. For instance, the MAX CLIQUE problem and the
CHROMATIC NUMBER problem, which are both in poly-APX, are inter-reducible to each other. The above
observation motivates the search for other interesting function classes f , for which the class f -APX may
contain interesting optimization problems.

4.2 Applications

The following is a consequence ofTheorem 5.

Theorem 6

a) RMAX(2) = poly-APX.

b) If SET COVER is canonically hard to approximate to within a factor of 
(logn), then log-APX =
MIN F+�2(1).
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We briefly sketch the proof of this theorem. The hardness reduction for MAX SAT and CLIQUE are
canonical [2, 11]. The classes APX-PB, poly-APX, log-APX are expressible as classesF -APX for downward
closed function families. The problems MAX SAT, MAX CLIQUE and SET COVER are additive. Thus,
we can now apply Theorem 5.

Remark 7 We would like to point out that almost all known instances of hardness results seem to be shown
for problems which are additive. In particular, this is true for all MAX SNP problems, MAX CLIQUE,
CHROMATIC NUMBER, and SET COVER. Two cases where a hardness result does not seem to directly
apply to an additive problem is that of LONGEST PATH [17] and BIN PACKING. In the former case, the
closely related LONGEST S-T PATH problem is easily seen to be additive and the hardness result essentially
stems from this problem. As for the case of BIN PACKING, which does not admit a PTAS, the hardness result
is not of a multiplicative nature and in fact this problem can be approximated to within arbitrarily small
factors, provided a small additive error term is allowed. This yields a reason why this problem will not be
additive. Lastly, the most interesting optimization problems which do not seem to be additive are problems
related to GRAPH BISECTION or PARTITION, and these also happen to be notable instances where no
hardness of approximation results have been achieved!

5 Local Search and MAX SNP

In this section we present a formal definition of the paradigm of non-oblivious local search. The idea of non-
oblivious local search has been implicitly present in some well-known techniques such as the interior-point
methods. We will formalize this idea in context of MAX SNP and illustrate its application to MAX SNP
problems. Given a MAX SNP problem �, recall that the goal is to find a structure S which maximizes the
objective function: V (I; S) =P~x�(I; S; ~x). In the subsequent discussion, we view S as a k-dimensional
boolean vector.

5.1 Classical Local Search

We start by reviewing the standard mechanism for constructing a local search algorithm. A �-local algorithmA for� is based on a distance functionD(S1; S2)which is the Hamming distance between two k-dimensional
vectors. The �-neighborhood of a structure S is given by N(S; �) = fS0 � Un jD(S; S0) � �g, where U
is the universe. A structure S is called �-optimal if 8S0 2 N(S; �), we have V (I; S) � V (I; S 0). The
algorithm computes a �-optimum by performing a series of greedy improvements to an initial structure S0,
where each iteration moves from the current structure Si to some Si+1 2 N(Si; �) of better value (if any).
For constant �, a �-local search algorithm for a polynomially-bounded NPO problem runs in polynomial
time because:� each local change is polynomially computable, and� the number of iterations is polynomially bounded since the value of the objective function improves

monotonically by an integral amount with each iteration, and the optimum is polynomially-bounded.

5.2 Non-Oblivious Local Search

A non-oblivious local search algorithm is based on a 3-tuple hS0;F ;Di, where S0 is the initial solution
structure which must be independent of the input,F(I; S) is a real-valued function referred to as the weight
function, andD is a real-valued distance function which returns the distance between two structures in some
appropriately chosen metric. The weight functionF should be such that the number of distinct values taken
by F(I; S) is polynomially bounded in the input size. Moreover, the distance function D should be such
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that given a structure S and a fixed �, N(S; �) can be computed in time polynomial in jSj. Then, as in
classical local search, for constant �, a non-oblivious �-local algorithm terminates in time polynomial in the
input size.

The classical local search paradigm, which we call oblivious local search, makes the natural choice for
the function F(I; S), and the distance function D, i.e., it chooses them to be V (I; S) and the Hamming
distance. However, as we show later, this choice does not always yield a good approximation ratio. We now
formalize our notion of this more general type of local search.

Definition 15 (Non-Oblivious Local Search Algorithm) A non-oblivious local search algorithm is a �-
local search algorithm whose weight function is defined to beF(I; S) =X~x rXi=1 pi�i(I; S; ~x) ;
where r is a constant, �i’s are quantifier-free first-order formulas, and the profits pi are real constants. The
distance functionD is an arbitrary polynomial-time computable function.

A non-oblivious local search can be implemented in polynomial time in much the same way as the
oblivious local search. Note that the we are only considering polynomially-bounded weight functions and
the profits pi are fixed independent of the input size. In general, the non-oblivious weight functions do not
direct the search in the direction of the actual objective function. In fact, as we will see, this is exactly the
reason why they are more powerful and allow for better approximations.

We now define two classes of NPO problems.

Definition 16 (Oblivious GLO) The class of problems OBLIVIOUS GLO consists of all NPOproblems which
can be approximated within constant factors by an oblivious �-local search algorithm for some constant �.

Definition 17 (Non-Oblivious GLO) The class of problems NON-OBLIVIOUS GLO consists of all NPO
problems which can be approximated within constant factors by a non-oblivious �-local search algorithm
for some constant �.

Remark 8 It would be perfectly reasonable to allow weight functions that are non-linear, but we stay with
the above definition for the purposes of this paper. Allowing only a constant number of predicates in the
weight functions enables us to prevent the encoding of arbitrarily complicated approximation algorithms.
The structureS is a k-dimensionalvector, and so a natural metric for the distance functionD is the Hamming
distance. In fact, classical local search is indeed based on the Hamming metric and this is useful in proving
negative results for the paradigm. In contrast, the definition of non-oblivious local search allows for other
distance functions, but we will use only the Hamming metric in proving positive results in the remainder
of this paper. However, we have found that it is sometimes useful to modify this, for example by modifying
the Hamming distance so that the complement of a vector is considered to be at distance 1 from it. Finally,
it is sometimes convenient to assume that the local search makes the best possible move in the bounded
neighborhood, rather than an arbitrary move which improves the weight function. We believe that this does
not increase the power of non-oblivious local search.

6 The Power of Non-Oblivious Local Search

We will show that there exists a choice of a non-oblivious weight function for MAX k-SAT such that any
assignment which is 1-optimal with respect to this weight function, yields a performance ratio of 2k=(2k�1)
with respect to the optimal. But first, we obtain tight bounds on the performance of oblivious local search

14



for MAX 2-SAT, establishing that its performance is significantly weaker than the best-known result even
when allowed to search exponentially large neighborhoods. We use the following notation: for any fixed
truth assignment ~Z , Si is the set of clauses in which exactly i literals are true; and, for a set of clauses S,W (S) denotes the total weight of the clauses in S.

6.1 Oblivious Local Search for MAX 2-SAT

We show a strong separation in the performance of oblivious and non-obliviouslocal search for MAX 2-SAT.
Suppose we use a �-local strategy with the weight function F being the total weight of the clauses satisfied
by the assignment, i.e., F = W (S1) +W (S2). The following theorem shows that for any � = o(n), an
oblivious �-local strategy cannot deliver a performance ratio better than 3=2. This is rather surprising given
that we are willing to allow near-exponential time for the oblivious algorithm.

Theorem 7 The asymptotic performance ratio for an oblivious �-local search algorithm for MAX 2-SAT is3=2 for any positive � = o(n). This ratio is still bounded by 5=4 when � may take any value less than n=2.

Proof: We first show the existence of an input instance for MAX 2-SAT which may elicit a relatively
poor performance ratio for any �-local algorithm provided � = o(n). In our construction of such an input
instance, we assume that n � 2�+1. The input instance comprises of a disjoint union of four sets of clauses,
say �1;�2;�3 and �4, defined as below:�1 = [1�i<j�n(zi + zj);�2 = [1�i<j�n(zi + zj);�3 = [0�i�� �2i+1;�4 = [2�+2�i�n �i;�i = [i<j�n(zi + zj):

Clearly, j�1j = j�2j = �n2�, and j�3j+ j�4j = �n2�� n� + �(� + 1). Without loss of generality, assume

that the current input assignment is ~Z = (1; 1; : : : ; 1). This satisfies all clauses in �1 and �2. But none of
the clauses in �3 and �4 are satisfied. If we flip the assignment of values to any k � � variables, it would
unsatisfy precisely k(n � k) clauses in �1 + �2. This is the number of clauses in �1 + �2 where a flipped
variable occurs with an unflipped variable.

On the other hand, flipping the assigned values of any k � � variables can satisfy at most k(n � k)
clauses in �3 + �4 as we next show.

Let �(n; �) denote the set of clauses on n variables given by
S0�i�� �2i+1 + S2�+2�i�n �i where2� + 1 � n. We claim the following.

Lemma 1 Any assignment of values to the n variables such that at most k � � variables have been assigned
value false, can satisfy at most k(n� k) clauses in �(n; �).

Proof: We prove by simultaneous induction on n and � that the statement is true for any instance�(n; �)
where n and � are non-negative integers such that 2� + 1 � n. The base case includes n = 1 and n = 2
and is trivially verified to be true for the only allowable value of �, namely � = 0. We now assume that the
statement is true for any instance �(n0; �0) such that n0 < n and 2�0 + 1 � n0. Consider now the instance
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�(n; �). The statement is trivially true for � = 0. Now consider any � > 0 such that 2� + 1 � n. Letfzj1 ; zj2; : : :zjkg be any choice of k � � variables such that jp < jq for p < q. Again the assertion is
trivially true if k = 0 or k = 1. We assume that k � 2 from now on. If we delete all clauses containing the
variables z1 and z2 from �(n; �), we get the instance �(n� 2; � � 1). We now consider three cases.

Case 1 [j1 � 3]: In this case, we are reduced to the problem of finding an upper bound on the maximum
number of clauses satisfied by setting any k variables to false in �(n� 2; �� 1). If k � � � 1, we may use
the inductive hypothesis to conclude that no more than (n � 2 � k)(k) clauses will be satisfied. Thus the
assertion holds in this case. However, we may not directly use the inductive hypothesis if k = �. But in this
case we observe that since by the inductive hypothesis, setting any k � 1 variables in �(n � 2; � � 1) to
false, satisfies at most (n� 2� (k � 1))(k� 1) clauses, assigning the value false to any set of k variables,
can satisfy at most(n � 2� (k � 1))(k� 1) + 1k � 1(n� 2� (k � 1))(k� 1) = (n� k)k � k2
clauses. Hence the assertion holds in this case also.

Case 2 [j1 = 2]: In this case, zj1 satisfies one clause and the remaining k � 1 variables satisfy at most(n� 2� (k� 1))(k� 1) clauses by the inductive hypothesis on �(n� 2; �� 1). Adding up the two terms,
we see that the assertion holds.

Case 3 [j1 = 1]: We analyze this case based on whether j2 = 2 or j2 � 3. If j2 = 2, then z1 and z2, together
satisfy precisely n� 1 clauses and the remaining k � 2 variables, satisfy at most (n� 2� (k� 2))(k� 2)
clauses using the inductive hypothesis. Thus the assertion still holds. Otherwise, z1 satisfies precisely n� 1
clauses and the remaining k � 1 variables satisfy no more than (n � 1� (k � 1))(k� 1) clauses using the
inductive hypothesis. Summing up the two terms, we get (n� k)k as the upper bound on the total number
of clauses satisfied. Thus the assertion holds in this case also.

To see that this bound is tight, simply consider the situation when the k variables set to false arez1; z3; : : : ; z2k�1, for any k � �. The total number of clauses satisfied is given by
Pki=1 j�2i�1j = (n� k)k.

Assuming that each clause has the same weight, Lemma 1 allows us to conclude that a �-local algorithm
cannot increase the total weight of satisfied clauses with this starting assignment. An optimal assignment on
the other hand can satisfy all the clauses by choosing the vector ~Z = (0; 0; : : : ; 0). Thus the performance
ratio of a �-local algorithm, say R�, is bounded asR� = j�1j+ j�2j+ j�3j+ j�4jj�1j+ j�2j� 3�n2�+ �(� + 1)� �n2�n2� :

For any � = o(n), this ratio asymptotically converges to 3=2. We next show that this bound is tight
since a 1-local algorithm achieves it. However, before we do so, we make another intriguing observation,
namely, for any � < n=2, the ratio R� is bounded by 5=4.

Now to see that a 1-local algorithm ensures a performance ratio of3=2, consider any 1-optimal assignment~Z and let �i denote the set of clauses containing the variable zi such that no literal in any clause of �i is
satisfied by ~Z . Similarly, let �i denote the set of clauses containing the variable zi such that precisely one
literal is satisfied in any clause in �i and furthermore, it is precisely the literal containing the variable zi. If
we complement the value assigned to the variable zi, it is exactly the set of clauses in �i which becomes
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satisfied and the set of clauses in �i which is no longer satisfied. Since ~Z is 1-optimal, it must be the
case that W (�i) � W (�i). If we sum up this inequality over all the variables, then we get the inequalityPni=1W (�i) �Pni=1W (�i). We observe that

Pni=1W (�i) = 2W (S0) and
Pni=1W (�i) = W (S1) because

each clause in S0 gets counted twice while each clause in S1 gets counted exactly once. Thus the fractional
weight of the number of clauses not satisfied by a 1-local assignment is bounded asW (S0)W (S0) +W (S1) +W (S2) � W (S0)3W (S0) +W (S2) � W (S0)3W (S0) = 13 :
Hence the performance ratio achieved by a 1-local algorithm is bounded from above by 3=2. Combining this
with the upper bound derived earlier, we conclude that R1 = 3=2. This concludes the proof of the theorem.

6.2 Non-Oblivious Local Search for MAX 2-SAT

We now illustrate the power of non-oblivious local search by showing that it achieves a performance ratio
of 4=3 for MAX 2-SAT, using 1-local search with a simple non-oblivious weight function.

Theorem 8 Non-oblivious 1-local search achieves a performance ratio of 4=3 for MAX 2-SAT.

Proof: We use the non-oblivious weight functionF(I; ~Z) = 32W (S1) + 2W (S2):
Consider any assignment ~Z which is 1-optimal with respect to this weight function. Without loss of
generality, we assume that the variables have been renamed such that each unnegated literal gets assigned
the value true. Let Pi;j and Ni;j respectively denote the total weight of clauses in Si containing the literalszj and zj , respectively. Since ~Z is a 1-optimal assignment, each variable zj must satisfy the following
equation. �12P2;j � 32P1;j + 12N1;j + 32N0;j � 0:
Summing this inequality over all the variables, and usingnXj=1 P1;j = nXj=1N1;j = W (S1);nXj=1P2;j = 2W (S2);nXj=1N0;j = 2W (S0);
we obtain the following inequality: W (S2) +W (S1) � 3W (S0):
This immediately implies that the total weight of the unsatisfied clauses at this local optimum is no more
than 1=4 times the total weight of all the clauses. Thus, this algorithm ensures a performance ratio of 4=3.

Remark 9 The same result can be achieved by using the oblivious weight function, and instead modifying
the distance function so that it corresponds to distances in a hypercube augmented by edges between nodes
whose addresses are complement of each other.
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6.3 Generalization to MAX k-SAT

We can also design a non-oblivious weight function for MAX k-SAT such that a 1-local strategy ensures a
performance ratio of 2k=(2k� 1). The weight functionF will be of the form F =Pki=0 ciW (Si) where the
coefficients ci’s will be specified later.

Theorem 9 Non-oblivious 1-local search achieves a performance ratio of 2k=(2k � 1) for MAX k-SAT.

Proof: Again, without loss of generality, we will assume that the variables have been renamed so that
each unnegated literal is assigned true under the current truth assignment. Thus the setSi is the set of clauses
with i unnegated literals.

Let �i = ci� ci�1 and let @F@zj denote the change in the current weight when we flip the value of zj , that
is, set it to 0. It is easy to verify the following equation:@F@zj = ��kPk;j + 2Xi=k(�iNi�1;j ��i�1Pi�1;j) + �1N0;j (1)

Thus when the algorithm terminates, we know that @F@zj � 0, for 1 � j � n. Summing over all values ofj, and using the fact
Pnj=1 Pi;j = iW (Si) and

Pnj=1Ni;j = (k� i)W (Si) we get the following inequality.k�kW (Sk) + 2Xi=k�1(i�i � (k� i)�i+1)W (Si) � k�1W (S0): (2)

We now determine the values of �i’s such that the coefficient of each term on the left hand side is unity.
It can be verified that �i = 1(k � i+ 1)� ki�1� k�iXj=0 kj!
achieves this goal. Thus the coefficient of W (S0) on the right hand side of equation (2) is 2k � 1. Clearly,
the weight of the clauses not satisfied is bounded by 1=2k times the total weight of all the clauses. It is
worthwhile to note that this is regardless of the value chosen for the coefficient c0.
7 Local Search for CSP and MAX SNP

We now introduce a class of constraint satisfaction problems such that the problems in MAX SNP are exactly
equivalent to the problems in this class. Furthermore, every problem in this class can be approximated to
within a constant factor by a non-oblivious local search algorithm.

7.1 Constraint Satisfaction Problems

The connection between the syntactic description of optimization problems and their approximability through
non-oblivious local search is made via a problem called MAX k-CSP which captures all the problems in
MAX SNP as a special case.

Definition 18 (k-ary Constraint) Let Z = fz1; : : : ; zng be a set of boolean variables. A k-ary constraint
on Z is C = (V ;P ), where V is a size k subset of Z, and P : fT; Fgk ! fT; Fg is a k-ary boolean
predicate.

Definition 19 (MAX k-CSP) Given a collection C1, : : :, Cm of weighted k-ary constraints over the vari-
ables Z = fz1; : : : ; zng, the MAX k-CSP problem is to find a truth assignment satisfying a maximum weight
sub-collection of the constraints.
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The following theorem shows that MAX k-CSP problem is a “universal” MAX SNP problem, in that it
contains as special cases all problems in MAX SNP.

Theorem 10

a) For fixed k, MAX k-CSP 2 MAX SNP.

b) Let � 2 MAX SNP. Then, for some constant k, � is a MAX k-CSP problem. Moreover, the k-CSP
instance corresponding to any instance of this problem can be computed in polynomial time.

Proof: The proof of part (b) is implicit in Theorem 1 in [23], and so we concentrate on proving part (a).
Our goal is to obtain a representation of the k-CSP problem in the MAX SNP syntax:maxS jfx j �(I; S; x)gj:
The input structure is I = (Z [ fT; Fg [ MAX; fARG; EVALg), where Z = fz1; : : : ; zng, MAX contains
the integers [1;maxfk; n;mg], the predicate ARG encodes the sets Vi, and the predicate EVAL encodes the
predicates Pi, as described below.� ARG(r; s; zt) is 3-ary predicate which is true if and only if the rth argument of Cs is the variable zt,

for 1 � r � k, 1 � s � m, and 1 � t � n.� EVAL(s; v1; : : : ; vk) is a (k + 1)-ary predicate which is true if and only if Ps(v1; : : : ; vk) evaluates to
true, for 1 � s � m and all vi 2 fT; Fg.

The structure S is defined as (Z; fTRUEg), where TRUE is a unary predicate which denotes an assignment of
truth values to the variables in Z. The vector x has k + 1 components which will be called x1, : : :, xk ands, for convenience. The intention is that the xi’s refer to the arguments of the sth constraint.

All that remains is to specify the quantifier-free formula �. The basic idea is that �(I; S; x) should
evaluate to true if and only if the following two conditions are satisfied:� the arguments of the constraintCs are given by the variables x1, : : :, xk, in that order; and,� the values given to these variables under the truth assignment specified byS are such that the constraint

is satisfied.

The formula� is given by the followingexpression, with the two sub-formulas ensuring these two conditions. k̂r=1 ARG(r; s; xr)! ^ 0@ _v1;:::;vk2fT;Fg EVAL(s; v1; : : : ; vk) ^  k̂r=1 vr , TRUE(xr)!!1A
It is easy to see that the first sub-formula has the desired effect of checking that the xr’s correspond to the
arguments of Cs. The second sub-formula considers all possible truth assignment to these k variables, and
checks that the particular set of values assigned by the structure S will make Ps evaluate to true.

For a fixed structure S, there is exactly one choice of x per constraint that could make � evaluate to
true, and this happens if and only if that constraint is satisfied. Thus, the value of the solution given by any
particular truth assignment structure S is exactly the number of constraints that are satisfied. This shows
that the MAX SNP problem always has the same value as intended in the k-CSP problem.

Finally, there are still a few things which need to be checked to ensure that this is a valid MAX SNP
formulation. Notice that all the predicates are of bounded arity and the structures consist of a bounded
number of such predicates, i.e., independent of the input size which is given by MAX. Further, although the
length of the formula is exponential in k, it is independent of the input.
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7.2 Non-Oblivious Local Search for MAX k-CSP

A suitable generalization of the non-oblivious local search algorithm for MAX k-SAT yields the following
result.

Theorem 11 A non-oblivious 1-local search algorithm has performance ratio 2k for MAX k-CSP.

Proof: We use an approach similar to the one used in the previous section to design a non-oblivious
weight functionF for the weighted version of the MAX k-CSP problem such that a 1-local algorithm yields2k performance ratio to this problem.

We consider only the constraints with at least one satisfying assignment. Each such constraint can be
replaced by a monomial which is the conjunction of some k literals such that when the monomial evaluates to
true the corresponding literal assignment represents a satisfying assignment for the constraint. Furthermore,
each such monomial has precisely one satisfying assignment. We assign to each monomial the weight of
the constraint it represents. Thus any assignment of variables which satisfies monomials of total weightW0,
also satisfies constraints in the original problem of total weight W0.

Let Si denote the monomials with i true literals, and assume that the weight function F is of the formPki=1 ciW (Si). Thus, assuming that the variables have been renamed so that the current assignment gives
value true to each variable, we know that for any variable zj, @F@zj is given by equation (1). As before, using

the fact that for any 1-optimal assignment, @F@zj � 0 for 1 � j � n, and summing over all values of j, we
can write the following inequality.k�1W (S0) + k�1Xi=2((k � i)�i+1 � i�i)W (Si) � k�kW (Sk) : (3)

We now determine the values of �i’s such that the coefficient of each term on the left hand side is unity. It
can be verified that �i = 1i�ki� i�1Xj=0 kj!
achieves this goal. Thus the coefficient of W (Sk) on the right hand side of equation (1) is 2k � 1. Clearly,
the total weight of clauses satisfied is at least 1=2k times the total weight of all the clauses with at least one
satisfiable assignment.

We conclude the following theorem.

Theorem 12 Every optimization problem � 2 MAX SNP can be approximated to within some constant
factor by a (uniform) non-oblivious 1-local search algorithm, i.e.,

MAX SNP � NON-OBLIVIOUS GLO:
For a problem expressible as k-CSP, the performance ratio is at most 2k.

8 Non-Oblivious versus Oblivious GLO

In this section, we show that there exist problems for which no constant factor approximation can be obtained
by any �-local search algorithm with oblivious weight function, even when we allow � to grow with the
input size. However, a simple 1-local search algorithm using an appropriate non-oblivious weight function
can ensure a constant performance ratio.
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8.1 MAX 2-CSP

The first problem is an instance of MAX 2-CSP where we are given a collection of monomials such that
each monomial is an “and” of precisely two literals. The objective is to find an assignment to maximize the
number of monomials satisfied.

We show an instance of this problem such that for every � = o(n), there exists an instance one of whose
local optima has value that is a vanishingly small fraction of the global optimum.

The input instance consists of a disjoint union of two sets of monomials, say�1 and �2, defined as below:�1 = [1�i<j�n(zi ^ zj);�2 = [1�i�� [i<j�n(zi ^ zj):
Clearly, j�1j = �n2�, and j�2j = n�� ��+12 �. Consider the truth assignment ~Z = (1; 1; : : : ; 1). It satisfies

all monomials in �2 but none of the monomials in �1. We claim that this assignment is �-optimal with
respect to the oblivious weight function. To see this, observe that complementing the value of any p � �
variables will unsatisfy at least �p=2 monomials in �2 for any � = o(n). On the other hand, this will satisfy
precisely

�p2� monomials in �1. For any p � �, we have (�p)=2 � �p2�, and so Z is a �-local optimum.

The optimal assignment on the other hand, namely ~ZOPT = (0; 0; : : : ; 0), satisfies all monomials in �1.
Thus, for � < n=2, the performance ratio achieved by any �-local algorithm is no more than

�n2�=(n����+12 �)
which asymptotically diverges to infinity for any � = o(n). We have already seen in Section 7 that a 1-
local non-oblivious algorithm ensures a performance ratio of 4 for this problem. Since this problem is in
MAX SNP, we obtain the following theorem.

Theorem 13 There exist problems in MAX SNP such that for � = o(n), no �-local oblivious algorithm can
approximate them to within a constant performance ratio, i.e.,

MAX SNP 6� OBLIVIOUS GLO:
8.2 Vertex Cover

Ausiello and Protasi [4] have shown that VERTEX COVER does not belong to the class GLO and, hence,
there does not exist any constant � such that an oblivious �-local search algorithm can compute a constant
factor approximation. In fact, their example can be used to show that for any � = o(n), the performance
ratio ensured by �-local search asymptotically diverges to infinity. However, we show that there exists a
rather simple non-oblivious weight function which ensures a factor 2 approximation via a 1-local search. In
fact, the algorithm simply enforces the behavior of the standard approximation algorithm which iteratively
builds a vertex cover by simply including both end-points of any currently uncovered edge.

We assume that the input graph G is given as a structure (V; fEg) where V is the set of vertices andE � V � V encodes the edges of the graph. Our solution is represented by a 2-ary predicate M which
is iteratively constructed so as to represent a maximal matching. Clearly, the end-points of any maximal
matching constitute a valid vertex cover and such a vertex cover can be at most twice as large as any other
vertex cover in the graph. Thus M is an encoding of the vertex cover computed by the algorithm.

The algorithm starts with M initialized to the empty relation and at each iteration, at most one new pair
is included in it. The non-oblivious weight function used is as below:F(I;M) = Xhx;y;zi2V 3[�1(x; y; z)� 2�2(x; y; z)� �3(x; y; z)];
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where �1(x; y; z) = (M(x; y) ^E(x; y)^ (x = z));�2(x; y; z) = (M(x; y) ^M(x; z));�3(x; y; z) = (M(x; y) ^E(x; y)):
Let M encode a valid matching in the graph G. We make the following observations.� Any relation M 0 obtained from M by either deleting an edge from it, or including an edge which

is incident on an edge of M , or including a non-existent edge, has the property that F(I;M 0) �F(I;M). Thus in a 1-local search from M , we will never move to a relation M 0 which does not
encode a valid matching of G.� On the other hand, if a relation M 0 corresponds to the encoding of a matching in G which is larger
than the matching encoded by M , thenF(I;M 0) > F(I;M). Thus if M does not encode a maximal
matching in G, there always exist a relation in its 1-neighborhood of larger weight than itself.

These two observations, combined with the fact that we start with a valid initial matching (the empty
matching), immediately allow us to conclude that any 1-optimal relation M always encodes a maximal
matching in G. We have established the following.

Theorem 14 A 1-local search algorithm using the above non-oblivious weight function achieves a perfor-
mance ratio of 2 for the VERTEX COVER problem.

Theorem 15 GLO is a strict subset of NON-OBLIVIOUS GLO:
As an aside, it can be seen that this algorithm has the same performance starting with an arbitrary initial

solution. This is because for any relation M not encoding a matching of the input graph, deleting one of the
violating members strictly increases F(I;M).
9 The Traveling Salesman Problem

The TSP(1,2) problem is the traveling salesman problem restricted to complete graphs where all edge weights
are either 1 or 2; clearly, this satisfies the triangle inequality. Papadimitriou and Yannakakis [24] showed
that this problem is hard for MAX SNP. The natural weight function for TSP(1,2), that is, the weight of the
tour, can be used to show that a 4-local algorithm yields a 3=2 performance ratio. The algorithm starts with
an arbitrary tour and in each iteration, it checks if there exist two disjoint edges (a; b) and (c; d) on the tour
such that deleting them and replacing them with the edges (a; c) and (b; d) yields a tour of lesser cost.

Theorem 16 A 4-local search algorithm using the oblivious weight function achieves a 3=2 performance
ratio for TSP(1,2).

Proof: Let C be a 4-optimal solution and let � be a permutation such that the vertices in C occur in the
order v�1 ; v�2 ; : : : ; v�n . Consider any optimal solution O. With each unit cost edge e in O, we associate a
unit cost edge e0 in C as follows. Let e = (v�i ; v�j) where i < j. If j = i + 1 then e0 = e. Otherwise,
consider the edges e1 = (v�i ; v�i+1) and e2 = (v�j ; v�j+1) on C. We claim either e1 or e2 must be of unit
cost. Suppose not, then the tour C0 which is obtained by simply deleting both e1 and e2 and inserting the
edges e and f = (v�i+1 ; v�j+1) has cost at least one less than C. But C is 4-optimal and thus this is a
contradiction.
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Let UO denotes the set of unit cost edges in O and let UC be the set of unit cost edges in C which form
the image of UO under the above mapping. Since an edge e0 = (v�i ; v�i+1) in UC can only be the image of
unit cost edges incident on v�i in O and since O is a tour, there are at most two edges in UO which map toe0. Thus jUCj � jUOj=2 and hencecost(O)cost(C) � jUOj+ 2(n� jUOj)jUOj=2 + 2(n� jUOj=2) � 23 :

In fact, the above bound can be shown to be tight.

10 Maximum Independent Sets in Bounded Degree Graphs

The input instance to the maximum independent set problem in bounded degree graphs, denoted MIS-B, is
a graph G such that the degree of any vertex in G is bounded by a constant �. We present an algorithm with
performance ratio (p8�2 + 4�+ 1� 2�+ 1)=2 for this problem when � � 10.

Our algorithm uses two local search algorithms such that the larger of the two independent sets computed
by these algorithms, gives us the above claimed performance ratio. We refer to these two algorithms as A1
and A2.

In our framework, the algorithmA1 can be characterized as a 3-local algorithm with the weight function
simply being jI j � 3j(I � I) \ Ej. Thus if we start with I initialized to empty set, it is easy to see that at
each iteration, I will correspond to an independent set in G. A convenient way of looking at this algorithm
is as follows. We define an i $ j swap to be the process of deleting i vertices from S and including j
vertices from the set V � S to the set S. In each iteration, the algorithm A1 performs either a 0 $ j swap
where 1 � j � 3, or a 1$ 2 swap. A 0$ j swap however, can be interpreted as j applications of 0$ 1
swaps. Thus the algorithm may be viewed as executing a 0 $ 1 swap or a 1 $ 2 swap at each iteration.
The algorithm terminates when neither of these two operations is applicable.

Let I denote the 3-optimal independent set produced by the algorithm A1. Furthermore, let O be any
optimal independent set and let X = I \O. We make the following useful observations.� Since for no vertex in I , a 0 $ 1 swap can be performed, it implies that each vertex in V � I must

have at least one incoming edge to I .� Similarly, since no 1 $ 2 swaps can be performed, it implies that at most jI �X j vertices in O � I
can have precisely one edge coming into I . Thus jO�X j � jI �X j = jOj � jI j vertices in O �X
must have at least two edges entering the set I .

A rather straightforward consequence of these two observations is the following lemma.

Lemma 2 The algorithmA1 has performance ratio (� + 1)=2 for MIS-B.

Proof: The above two observations imply that the minimum number of edges entering I from the
vertices in O�X is jI �X j+ 2(jOj � jI j). On the other hand, the maximum number of edges coming out
of the vertices in I to the vertices in O �X is bounded by jI �X j�. Thus we must havejI �X j� � jI �X j+ 2(jOj � jI j) :
Rearranging, we get jI jjOj � 2� + 1 + jX j(�� 1)jOj(�+ 1) ;
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which yields the desired result.
This nearly matches the approximation ratio of �=2 due to Hochbaum [15]. It should be noted that the

above result holds for a broader class of graphs, viz., k-claw free graphs. A graph is called k-claw free if
there does not exist an independent set of size k or larger such that all the vertices in the independent set are
adjacent to the same vertex. Lemma 2 applies to (�+ 1)-claw free graphs.

Our next objective is to further improve this ratio by using the algorithm A1 in combination with the
algorithmA2. The following lemma uses a slightly different counting argument to give an alternative bound
on the approximation ratio of the algorithmA1 when there is a constraint on the size of the optimal solution.

Lemma 3 For any real number c < �, the algorithmA1 has performance ratio (��c)=2 for MIS-B when
the optimal value itself is no more than ((�� c)jV j)=(� + c+ 4).

Proof: As noted earlier, each vertex in V � I must have at least one edge coming into the set I and at
least jOj� jI j vertices inO must have at least two edges coming into I . Therefore, the following inequality
must be satisfied: jI j� � jV j � jI j+ jOj � jI j :
Thus jI j � (jV j+ jOj)=(�+ 2). Finally, observe thatjV j+ jOj�+ 2 � 2�� c jOj
whenever jOj � (�� c)jV j=(� + c+ 4).

The above lemma shows that the algorithm A1 yields a better approximation ratio when the size of the
optimal independent set is relatively small.

The algorithmA2 is simply the classical greedy algorithm. This algorithm can be conveniently included
in our framework if we use directed local search. If we let N(I) denote the set of neighbors of the vertices
in I , then the weight function is simply jI j(� + 1) + jV � (I + N(I))j � j(I � I) \ Ej(� + 1). It is
not difficult to see that starting with an empty independent set, a 1-local algorithm with directed search on
above weight function simply simulates a greedy algorithm. The greedy algorithm exploits the situation
when the optimal independent set is relatively large in size. It does so by using the fact that the existence
of a large independent set in G ensures a large subset of vertices in G with relatively small average degree.
The following two lemmas characterize the performance of the greedy algorithm.

Lemma 4 Suppose there exists an independent set X � V such that the average degree of vertices in X
is bounded by �. Then for any � � 1, the greedy algorithm produces an independent set of size at leastjX j=(1+ �).

Proof: The greedy algorithm iteratively chooses a vertex of smallest degree in the remaining graph
and then deletes this vertex and all its neighbors from the graph. We examine the behavior of the greedy
by considering two types of iterations. First consider the iterations in which it picks a vertex outside X .
Suppose in the ith such iteration, it picks a vertex in V �X with exactly ki neighbors in the set X in the
remaining graph. Since each one of these ki vertices must also have at least ki edges incident on them, we
loose at least k2i edges incident onX . Suppose only p such iterations occur and let

Ppi=1 ki = x. We observe
that

Ppi=1 k2i � �jX j. Secondly, we consider the iterations when the greedy selects a vertex in X . Then we
do not loose any other vertices inX because X is an independent set. Thus the total size of the independent
set constructed by the greedy algorithm is at least p+ q where q = jX j � x.

By the Cauchy-Schwartz inequality,
Ppi=1 k2i � x2=p. Therefore, we have (1 + �)jX j � x2=p + x.

Rearranging, we obtain thatp � x2(1 + �)jX j � x � x2(1 + �)jX j � jX j1 + � + q2(1 + �)jX j � 2q1 + �:
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Thus p+ q � jX j1 + � + q2(1 + �)jX j � 2q1 + � + q:
But 2q=(1 + �) � q for � � 1, and the result follows.

Lemma 5 For� � 10 and any non-negative real number c � 3��p8�2 + 4�+ 1�1, the algorithmA2
has performance ratio (��c)=2 for MIS-B when the optimal value itself is at least ((��c)jV j)=(�+c+4).

Proof: Observe that the average degree of vertices in O is bounded by (jV �Oj�=jOj) and thus using
the fact that jOj � (�� c)jV j=(� + c+ 4), we know that the algorithm A2 computes an independent set
of size at least jOj=(1 + �) where � = (4�+ 2�c)=(�� c), and � � 1 for c � 0. Hence it is sufficient to
determine the range of values c can take such that the following inequality is satisfied:jOj1 + � � � 2�� c� jOj:
Substituting the bound on the value of � and rearranging the terms of the equation, yields the following
quadratic equation : c2 � (6�� 2)c+�2 � 10� � 0 :

Since c must be strictly bounded by �, the above quadratic equation is satisfied for any choice ofc � 3��p8�2 + 4�+ 1� 1 if � � 10.
Combining the results of Lemmas 3 and 5 and choosing the largest allowable value for c, we get the

following result.

Theorem 17 An approximation algorithm which simply outputs the larger of the two independent sets
computed by the algorithmsA1 andA2, has performance ratio (p8�2 + 4�+ 1� 2�+ 1)=2 for MIS-B.

The performance ratio claimed above is essentially �=2:414. This improves upon the long-standing
approximation ratio of �=2 due to Hochbaum [15], when � � 10. However, very recently, there has been
a flurry of new results for this problem. Berman and Furer [6] have given an algorithm with performance
ratio (� + 3)=5 + � when � is even, and (� + 3:25)=5 + � for odd �, where � > 0 is a fixed constant.
Halldorsson and Radhakrishnan [14] have shown that algorithmA1 when run on k-clique free graphs, yields
an independent set of size at least 2n=(� + k). They combine this algorithm with a clique-removal based
scheme to achieve a performance ratio of �=6(1 + o(1)).

In conclusion, note that Khanna, Motwani and Vishwanathan [19] have recently shown that a semi-
definite programming technique can be used to obtain a (� log log �)=(log�)-approximation algorithm for
this problem.
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