
CSC375F Problem Set 2 Fall, 2010

Due: Wed, November 3, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do your
own work (but see below). Similar questions will appear on the first term test. You may
consult with others concerning the general approach for solving problems on assignments,
but you must write up all solutions entirely on your own. Anything else is plagiarism,
and is subject to the University’s Code of Behavior. You will receive 1/5 points for any
(non bonus) question/subquestion for which you say “I do not know how to answer this
question”. You will receive .5/5 points if you just leave the question blank.

1. (20 points)

Consider the following clustering problem. The input is a sorted set X of n distinct
real numbers x1 < x2 . . . < xn. A clustering of X is a partitioning of the points into
k sets of consecutive inputs for some 1 ≤ k ≤ n. X1, . . . Xk for some 1 ≤ k ≤ n.
That is, each cluster Xi is a consecutive sequence of inputs xr, xr+1 . . . , xs for some
1 ≤ r ≤ s ≤ n. The diameter di of Xi = max[x ∈ Xi] − min[x ∈ Xi]. Let τ > 0
and define the cost of a clustering {X1, . . . , Xk} to be k · τ +

∑k

i=1 di. That is, we
charge τ and the diameter of Xi for each cluster Xi.

Provide a dynamic programming algorithm for computing the cost of an optimal
clustering; that is, the algorithm must determine the optimal k and the clustering.
Provide the appropriate semantic and computational arrays, including base case(s).
What is the time complexity of your algorithm?

2. (30 points)

Consider the following one machine scheduling problem. We are given n jobs
J1, . . . , Jn with Ji = (di, ti, vi) where di is the deadline for job Ji, ti is its pro-
cessing time, and vi is its profit. Assume all input parameters are positive integers.
A schedule is a function σ : {1, . . . , n} → {0, 1, 2, . . .}∪{∞} where σ(i) = ∞ means
that job Ji is not scheduled and σ(i) = k means that job Ji begins executing at time
k. A schedule is feasible if
(1) for all i 6= j if σ(i) 6= ∞ and σ(j) 6= ∞ then [σ(i), σ(i)+pi)∩ [σ(j), σ(j)+pj) = ∅
(2) for all i, if σ(i) 6= ∞ then σ(i) + pi ≤ di.
That is, no two scheduled jobs will overlap and every scheduled job finishes before its
deadline. The optimization problem is to find a feasible schedule σ that maximizes∑

σ(i) 6=∞ vi; That is, to maximize the profit of scheduled jobs in a feasible schedule.

(a) (5 points)

Using an exchange argument show that every feasible schedule can be rear-
ranged so that σ(i) < σ(j) 6= ∞ implies that di ≤ dj; that is, jobs in a feasible
schedule can be scheduled in order of their deadlines. [5 points]
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(b) (10 points)

Now consider the case that all processing times are not too large, say pi ≤ n2

for all i. Describe a polynomial time dynamic programming algorithm for
computing the value of an optimal solution. In particular, specify appropriate
semantic and computational arrays, briefly justify that your algorithm is cor-
rect, and estimate the time complexity of your algorithm. Hint: First sort the
jobs so that d1 ≤ d2 . . . ≤ dn. Observe that this problem is a generalization
of the knapsack problem. The knapsack problem is the special case where all
di = W where W is the weight bound for the knapsack and the knapsack item
weights are wi = pi.

(c) (10 points)

Now consider the case that all job values are not too large, say vi ≤ n2 for
all i. Describe a polynomial time dynamic programming algorithm for com-
puting the value of an optimal solution. Again, specify appropriate semantic
and computational arrays, briefly justify that your algorithm is correct, and
estimate the time complexity of your algorithm.

(d) (5 points)

Briefly discuss whether or not there is an FPTAS for this problem.

3. (20 points)

Consider the triangulation of a convex polygon in the plane. The polygon is repre-
sented by its vertices v0, v2, . . . , vn−1 in clockwise order. Any convex polygon with n
vertices is triangulated using n − 3 chords (lines connecting non adjacent vertices)
resulting in n − 2 triangles ∆1, . . . , ∆n−2. Consider an arbitrary weight function w
on triangles; for example, we could have w(∆) = perimeter of ∆.

Construct a dynamic program for computing the (weight of a) triangulation for an
n vertex convex polygon that minimizes

∑n−2
i=1 w(∆i). That is, define semantic and

computational arrays for your dynamic program. What is the time complexity of
your algorithm?

Hint: Think of a triangulation as a parse tree.

4. (20 points)

Consider the following local search algorithm for finding a maximum weight inde-
pendent set in a k +1 claw-free graph G = (V,E) with weight function w : V → ℜ .
Let S ⊆ V be an independent set and define its neighbourhood Nbhd(S) = {S ′ :
S ′ = S + v − N(v) for some v /∈ S} where N(v) is the neighbourhood of vertex v.
Let w(S) =

∑
v∈S w(v).

S := any independent set
While ∃S ′ ∈ Nbhd(S) such that w(S)′) > w(S)

S := S ′

End While

Show that the locality gap is k.
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5. (20 points)

Suppose we have a maximum integral flow f in a flow network F = (G, s, t, c) with
integral capacities.

(a) (5 points) Does there always exist an edge e such that by decreasing the ca-
pacity of e by one unit to c(e)− 1, the value of the maximum flow is decreased
by exactly one unit? Justify your answer.

(b) (5 points)

Does there always exist an edge e such that by increasing the capacity of e by
one unit to c(e)+1, the value of the maximum flow is increased by exactly one
unit? Justify your answer.

(c) (10 points) Suppose that there is an edge e such that increasing its capacity by
one unit will result in the increase of the maximum flow value. Show how to
find such an edge in time that is determined by the computation of Dijkstra’s
least cost paths algorithm.
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