
CSC375F Problem Set 2 Fall, 2009

Due: Wed, November 4, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do your
own work (but see below). Similar questions will appear on the first term test. You may
consult with others concerning the general approach for solving problems on assignments,
but you must write up all solutions entirely on your own. Anything else is plagiarism,
and is subject to the University’s Code of Behavior. You will receive 1/5 points for any
(non bonus) question/subquestion for which you say “I do not know how to answer this
question”. You will receive .5/5 points if you just leave the question blank.
Advice: Do NOT spend an excessive amount of time on any question and especially not on
a bonus question. If you wish to spend “free time” thinking about (say) bonus questions
that is fine but you should not sacrifice time needed for other courses.

1. Consider the following variant of the knapsack problem. Given a set of items
{(w1, v1), . . . , (wn, vn)} and total knapsack weight bound W , a feasible solution
S ⊆ {1, 2, . . . , n} is a set (of item indices) such that

•
∑

i∈S wi ≤ W and

• if i ∈ S, then either i − 1 /∈ S and/or i − 2 /∈ S.

As a special case, if 2 ∈ S then 1 /∈ S.
Provide a dynamic programming solution (i.e. semantic and computational arrays)
for computing the value of an optimal solution and give the time bound for your
algorithm as a function of n and W .

2. In tutorial, it was sketched how Knuth’s analysis of the optimal binary search
tree dynamic programming algorithm results in time complexity Θ(n2). Using any
sources you can find, explain in your own words how to obtain this Θ(n2) time
bound.

3. The goal of this question is to show how to utilize the O(n2s) time DP for makespan
with s job sizes into a PTAS algorithm for the makespan problem on identical
machines. The general idea is to round job sizes down so that there are a small
number of job sizes (namely, 1

ǫ2
) and so that the underestimation of job sizes will

not add too much to the makespan computed for the rounded jobs. Throughout
this exercise we are assuming that all inputs are integers. We let m denote the
number of machines, and let {p1, . . . , pn} denotes the input jobs (that is, the jobs
are represented by their sizes). To simplify the problem we will assume that the
optimal makespan value T is known and that 1

ǫ
, 1

ǫ2
, ǫ · T , and ǫ2 · T are all integral.

(a) Given input I = (p1, . . . , pn) with say p1 ≥ p2 . . . ≥ pn, remove all jobs pj such
that pj < ǫ · T and round each remaining input job pi down to p′i, the next
integral multiple of ǫ2 · T . We let I ′ = (p′1, . . . , p

′

n′) denote the rounded jobs
with the “small” jobs pn′+1, . . . , pn removed. Show why we can assume there
are at most 1

ǫ2
job sizes, and why there are at most 1

ǫ
jobs on any machine in

a feasible schedule with makespan T on input I ′.

1



(b) Show that the actual makespan for the unrounded jobs p1, . . . , pn′ is at most
(1 + ǫ)T if T is a feasible makespan for I ′.

(c) After scheduling all the“large” jobs in I ′, greedily schedule the small jobs pj <
ǫT . Show that if T is a valid makespan for the original input set I, then there
will always be a machine with makespan at most T on which to schedule each
small job and that the resulting makespan for input set I is at most (1 + ǫ)T .

(d) Conclude (under the given assumptions and using the optimal DP for a bounded
number of job sizes as a black box) that there is a (1 + ǫ) approximation algo-

rithm for the makespan problem that runs in time O(n
2

ǫ
2 ).

4. (a) Consider the following problem: We are given n points X = {x1, . . . , xn} in
Euclidean d-dimensional space and constants δ > 0 and c ≥ 1 such that the n
points satisfy the condition that in any axis oriented d-dimensional cube with
length δ along each side, there are at most c points in the cube. The desired
result is the set of all pairs of points (xi, xj) in X such that the Euclidean
distance between xi and xj is at most δ. Use a divide and conquer algorithm
to compute the desired result in time O(n logd−1 n) where the “big O” notation
can be hiding factors involving c and d.

(b) Given n points X = {x1, . . . , xn} in Euclidean d-dimensional space, show how
to compute the closest pair of points in X in time O(n logd−1 n).

2


