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Announcements

Requests for regrading are normally within one week of solutions
being discussed or posted. For assignment 1, we will accept regrading
requests up to March 2. Regrading requests for assignments must be
made on Markus. All requests must have a one or two paragraph
explanation as to why you think a question was not given the proper
grade.

Assignment 2 is due March 5 at 4:59. There is a correction for Q1 on
A2. The desired time bound is O(n2 ·max

i

v
i

).

We expect to start listing questions for Assignment 3 by the end of
this week.
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This weeks agenda

Going over two transformations: vextrex-cover 
p

set-cover, and
3SAT 

p

3-COLOR.

Proving 3SAT is NP complete.

Reducing search and optimization problems to the corresponding
decision problem.

NP vs co � NP ; Factoring in NP \ co � NP

Other aspects of complexity theory

What is IP and LP?

Next week LP (only one week) and then 3 weeks for approximation
algorithms and randomized algorithms.
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The VertexCover p SetCover transformation

Let G = (V ,E ). A subset V 0 ⇢ V is a vertex cover for G if every edge
e 2 E is adjacent to at least one vertex in V 0. In the VertexCover decision
problem, we are given (G , k) and we need to determiine if G has a vertex
cover of size k .

Let U = {u1, . . . , um} be a set and let C = {S1, . . . , Sn} be a collection of
subsets of U; that is, S

i

✓ U. A subcollection C0 ⇢ C is a set cover for U
if every u

j

is in some S
i

2 C0. In the SetCover decision problem, we are
given (U, C, k) and we need to determine if there is a subcollection C0 of
size k that covers U.

We showed last week that IndpendentSet 
p

VertexCover. Here we show
that VertexCover 

p

SetCover.

For this transfiormation, given (G , k), let U = {e1, . . . , em} be the edges
of G and let C = {V1, . . . ,Vn

} where V
i

= {e
j

|e
j

is adjacent to v
i

}.

VertexCover is a very special case of SetCover where every element (i.e,,
an edge e) occurs in exactly two sets.
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3CNF p 3-COLOR: Outline of Transformation

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.

T

B

F

! 

x1

! 

x
1
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x2
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x
2

! 

xn

! 

x
n

! 

x3
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x
3

true false

base

31

3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

T F

B

! 

x1

! 

x
2

! 

x3
  

! 

C
i

= x
1
V x

2
V x

3

6-node gadget

true false

32

3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

  

! 

C
i

= x
1
V x

2
V x

3

T F

B

! 

x1

! 

x
2

! 

x3

not 3-colorable if all are red

true false

contradiction

If � is a 3CNF formula in n variables and m clauses, then h(�) = G� will
have 2n + 6m + 3 nodes and 3n + 13m + 3 edges.
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3CNF p 3-COLOR: Consistent literals

This slide and the next two slides are perhaps better thought of as
illustrating that if � is not satisfiable then then G is not 3 colorable.

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.
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is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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true false
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3CNF p 3-COLOR: The clause gadget

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
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! (iii) ensures a literal and its negation are opposites.
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G� is 3-colourable ) � satisfiable

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.
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3-Colorability
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� satisfiable ) G� is 3-colourable

33

3-Colorability

Claim.  Graph is 3-colorable iff ! is satisfiable.

Pf.  "   Suppose 3-SAT formula ! is satisfiable.
! Color all true literals T.
! Color node below green node F, and node below that B.
! Color remaining middle row nodes B.
! Color remaining bottom nodes T or F as forced.  !
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a literal set to true in 3-SAT assignment
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Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

YES instance.

35

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

NO instance.

36

Def.  A graph is planar if it can be embedded in the plane in such a way
that no two edges cross.
Applications:  VLSI circuit design, computer graphics.

Kuratowski's Theorem.  An undirected graph G is non-planar iff it
contains a subgraph homeomorphic to K5 or K3,3.

Planarity

Planar K5:  non-planar K3,3:  non-planar

homeomorphic to K3,3

Note we are choosing precisely one green node in each clause to force
a proper colouring.
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Finally, how does one show that 3SAT is
NP-complete

We now know how to generate more and more NP-compplete problems
assumming that 3SAT is NP-complete. But how do we know that 3SAT
(or any problem if we don’t use 3SAT) is NP-complete. Without at least
one NP-hard problem to begin, we cannot generate other NP-hard
problems.

Following Cook’s original proof, we can show how we can encode Turing
machine computations in the language of propositional logic. This will
yield the desired fresult that 3SAT is NP-hard (and therefore
NP-complete).

CLRS uses a circuit value problem relying on our understanding of Boolean
circuits. Although perhaps more intuitive, there is some hand-waving in
that approach whereas the TM encoding shows how we can make
everything precise. Note: We may not be proving all the claims but argue
that there is enough detail to be convinced that this encoding of TM
computations is su�cient to obtain the dsesired result. 10 / 41



Turing machines

We are using the classical one tape TM. This is the simplest TM
variant to formalize which will enable the proof for the NP
completeness of SAT. In the proof, we are assuming (without loss of
generality) that all time bounds T (n) are computable in polynomial
time.

Claim Any reasonable (classical) computing model algorithm running
in time T (n), can be simulated by a TM in time T (n)k for some k .
Hence we can use the TM model in the definition of P and NP .

Since we are only considering decision problems we will view TMs
that are defined for decision problems and hence do not need an
output other than a reject and accept state.

Following standard notation, formally, a specific TM is defined by a
tuple M = (Q,⌃, �, �, q0, qacc , qrej)

We will briefly explain (using the board) the model and notation.
Note that Q,⌃, � are all finite sets.
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Satisfiability is NP-Complete
• SAT = { < φ > | φ is a satisfiable Boolean formula }
• Theorem:  SAT is NP-complete.
• Lemma 1:  SAT ∈ NP.
• Lemma 2:  SAT is NP-hard.
• Proof of Lemma 1:

– Recall:  L ∈ NP if and only if ( ∃ V, poly-time verifier ) ( ∃ p, poly) 
x ∈ L iff (∃ c, |c| ≤ p(|x|) ) [ V( x, c ) accepts ]

– So, to show SAT ∈ NP, it’s enough to show ( ∃ V) ( ∃ p) 
φ ∈ SAT iff (∃ c, |c| ≤ p(|x|) ) [ V( φ, c ) accepts ]

– We know:  φ ∈ SAT iff there is an assignment to the variables such 
that φ with this assignment evaluates to 1.

– So, let certificate c be the assignment.
– Let verifier V take a formula φ and an assignment c and accept 

exactly if φ with c evaluates to true.
– Evaluate φ bottom-up, takes poly time.
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Satisfiability is NP-Complete
• Lemma 2:  SAT is NP-hard.
• Proof of Lemma 2:

– Need to show that, for any A ∈ NP, A ≤p SAT.
– Fix A ∈ NP.
– Construct a poly-time f such that 

w ∈ A if and only if f(w) ∈ SAT.

– By definition, since A ∈ NP, there is a nondeterministic 
TM M that decides A in polynomial time.

– Fix polynomial p such that M on input w always halts, on 
all branches, in time ≤ p(|w|); assume p(|w|) ≥ |w|.

– w ∈ A if and only if there is an accepting computation 
history (CH) of M on w.

A formula, write it as φw.
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Satisfiability is NP-Complete
• Lemma 2:  SAT is NP-hard.
• Proof, cont’d:

– Need w ∈ A if and only if f(w) (= φw) ∈ SAT.
– w ∈ A if and only if there is an accepting CH of M on w.
– So we must construct formula φw to be satisfiable iff there 

is an accepting CH of M on w.
– Recall definitions of computation history and accepting 

computation history from Post Correspondence Problem:   
#  C0 #  C1 #  C2  

• Configurations include tape contents, state, head position.
– We construct φw to describe an accepting CH.
– Let M = ( Q, Σ, Γ, δ, q0, qacc, qrej ) as usual.
– Instead of lining up configs in a row as before, arrange in 

( p(|w|) + 1 )  row × ( p(|w|) + 3 ) column matrix:
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Proof that SAT is NP-hard
• φw will be satisfiable iff there is an accepting CH of M on w.
• Let M = ( Q, Σ, Γ, δ, q0, qacc, qrej ).
• Arrange configs in ( p(|w|) + 1 )  × ( p(|w|) + 3 ) matrix:

#   q0 w1 w2 w3  wn -- --  -- #
#    #
#    #

#    #
• Successive configs, ending with accepting config.
• Assume WLOG that each computation takes exactly p(|w|) 

steps, so we use p(|w|) + 1 rows.
• p(|w|) + 3 columns: p(|w|) for the interesting portion of the 

tape, one for head and state, two for endmarkers.
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Proof that SAT is NP-hard
• φw is satisfiable iff there is an accepting CH of M on w.
• Entries in the matrix are represented by Boolean variables:

– Define C = Q ∪ Γ ∪ { # }, alphabet of possible matrix entries.
– Variable xi,j,c represents “the entry in position (i, j) is c”.

• Define φw as a formula over these xi,j,c variables, satisfiable
if and only if there is an accepting computation history for w 
(in matrix form).

• Moreover, an assignment of values to the xi,j,c variables that 
satisfies φw will correspond to an encoding of an accepting 
computation.

• Specifically, φw  = φcell  ∧ φstart  ∧ φaccept ∧ φmove , where:
– φcell :  There is exactly one value in each matrix location.
– φstart :  The first row represents the starting configuration.
– φaccept :  The last row is an accepting configuration. 
– φmove :  Successive rows represent allowable moves of M.

16 / 41



φcell

• For each position (i,j), write the conjunction of two formulas:

∨c ∈ C xi,j,c :  Some value appears in position (i,j).

∧c, d ∈ C, c ≠ d (¬xi,j,c ∨ ¬xi,j,d ):   Position (i,j) doesn’t contain 
two values.

• φcell:  Conjoin formulas for all positions (i,j).

• Easy to construct the entire formula φcell given w input.
• Construct it in polynomial time.
• Sanity check:  Length of formula is polynomial in |w|:

– O( (p(|w|)2 ) subformulas, one for each (i,j).
– Length of each subformula depends on C, O( |C|2 ).
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φstart

• The right symbols appear in the first row:
#   q0 w1 w2 w3  wn -- --  -- #

φstart:  x1,1,#  ∧ x1,2,q0  ∧ x1,3,w1  ∧ x1,4,w2  ∧  
∧ x1,n+2,wn  ∧ x1,n+3,-- ∧  
∧ x1,p(n)+2,-- ∧ x1,p(n)+3,#  
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φaccept

• For each j, 2 ≤ j≤ p(|w|) + 2, write the formula:

xp(|w|)+1,j,qacc 

• qacc appears in position j of the last row.
• φaccept:  Take disjunction (or) of all formulas for all j.
• That is, qacc appears in some position of the last 

row.
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φmove

• As for PCP, correct moves depend on 
correct changes to local portions of 
configurations.

• It’s enough to consider 2 × 3 rectangles:
• If every 2 × 3 rectangle is “good”, i.e., 

consistent with the transitions, then the 
entire matrix represents an accepting CH.

• For each position (i,j), 1 ≤ i ≤ p(|w|), 1 ≤ j ≤
p(|w|)+1, write a formula saying that the 
rectangle with upper left at (i,j) is “good”.

• Then conjoin all of these, O(p(|w|)2) clauses.
• Good tiles for (i,j), for a, b, c  in Γ:

a

a b c

cb

#

# a b

ba

a

a b #

#b
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φmove

• Other good tiles are defined in terms of the 
nondeterministic transition function δ.

• E.g., if δ(q1, a) includes tuple (q2, b, L), then 
the following are good:
– Represents the move directly; for any c:
– Head moves left out of the rectangle; for any c, d:
– Head is just to the left of the rectangle; for any c, d:
– Head at right; for any c, d, e:
– And more, for #, etc.

• Analogously if δ(q1, a) includes (q2, b, R). 
• Since M is nondeterministic, δ(q1, a) may 

contain several moves, so include all the 
tiles. 

c

q2 c b

aq1

q1

d b c

ca

a

b c d

dc

d

d q2 c

q1c

e

e d q2

cd
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• The good tiles give partial constraints on the computation.
• When taken together, they give enough constraints so that 

only a correct CH can satisfy them all.
• The part (conjunct) of φmove for (i,j) should say that the 

rectangle with upper left at (i,j) is good:
• It is simply the disjunction (or), over all allowable tiles, of 

the subformula:

xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,b1 ∧ xi+1,j+1,b2 ∧ xi+1,j+2,b3 

• Thus, φmove is the conjunction over all (i,j), of the 
disjunction over all good tiles, of the formula just above.

φmove

a1

b1 b2 b3

a3a2
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• φmove is the conjunction over all (i,j), of the 
disjunction over all good tiles, of the given six-
term conjunctive formula.

• Q: How big is the formula φmove?
• O(p(|w|)2) clauses, one for each (i,j) pair.
• Each clause is only constant length, O(1).

– Because machine M yields only a constant number of 
good tiles.

– And there are only 6 terms for each tile.
• Thus, length of φmove is polynomial in |w|.
• φw  = φcell  ∧ φstart  ∧ φaccept ∧ φmove , length also poly in |w|.

φmove
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• φw  = φcell  ∧ φstart  ∧ φaccept ∧ φmove , length poly in |w|.
• More importantly, can produce φw from w in time that is 

polynomial in |w|.
• w ∈ A if and only if M has an accepting CH for w if and 

only if φw is satisfiable.
• Thus, A ≤p SAT.
• Since A was any language in NP, this proves that SAT is 

NP-hard.
• Since SAT is in NP and is NP-hard, SAT is NP-complete.

φmove
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Reducing search and optimizatian problems to the
corresponding decision problem

We earlier made a claim that we can polynomial time reduce an NP-hard
search or optimization problemn to the corresponding decision problem.
This is usually easy to do for any specific problem.
Note: Now we are considering the general form of polynomial time
reductions and not the more restricted polyynomial time transformation.

Let’s consider the following search problem: Given a CNF formula F , find
a satisfying assignment if F is satisfiable, and otherwise say that F is not
satisfiable.

So let SAT be a subroutine that solves the decision problem for CNF
formulas (i.e., determnies whether or not a given CNF formula F ) is
satisfiable. After one call to the subroutine we know whether or not the
formula is satisfiable. So we might as well assume that F is satisfiable.
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Finishing the reduction of the SAT search problem
to the SAT decision problem

The idea now is to create a satsifying assignment ⌧ one vartiable at a
time. Say the propositional variables are x1, x2, . . . , xn.

Set ⌧(x1) = true and consider the formual F 0 = F |
x1=true

. Call SAT to
decide whether or not F 0 is satisfiable. If so, then set ⌧(x1) = true;
otherwise, set ⌧(x1) = false. In either case, we go on to consider
F 0 = F |

x1=⌧(x1) and as we did for x1, we can now determine a truth value
⌧(x2) for x2.

We continue to do this one variable at a time and thereby compute a
satisfying assignment ⌧ .

Note that there could be many satisfyling assignments ⌧ and we have just
found one such satisfying ⌧ .
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Reducing MAXSAT to the corresponding decision
problem

In the MAXSAT problem, we are given a CNF formula
F = C1 ^ C2 ^ . . . ^ C

m

and the objective is to find a truth assignment ⌧
that will maximize the number of clauses that are satisfied.

In the corresponding decision problem MSAT
k

, given (F , k), we need to
decide if F has a truth assignment satifying k clauses. Note: This is a
di↵erent problem that kSAT where we restrict clauses to have at most k
literals.

Note that SAT is a special case of MSAT
k

. Why? It follows that MSAT
k

is NP-hard and it is easy to see that MSAT
k

is in NP so that the problem
is NP-complete. We can then test MSAT

k

for each possible k (k  m, the
number of clauses) to find the optimum value k using MSAT

k

as a
subroutine. Then as in the search problem we can construct a truth
assignment that acheieves this value, by setting the propositional values,
one at a time.
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Another reduction of an optimization problem to the
corresponding decision problem

Consider the Weighted Maximum Independent Set (WMIS) optimization
problem. Namely, given G = (V ,E ,w), with w : V ! N, find an
independent set V 0 ✓ V so as to maximize

P
v2V 0 w(v). The weights are

non-negative integers, represented in binary so lets say that the largest
integer is 2` and hence the length of the encoding will be O(|E |+ |V | · `).

To compute an optimal solution, we need to use the IS decision procedure
to find the optimum value k  2` such that G has an independent set
with total weight k . We cannot test every k  2` (if ` is large). So we test
using binary search to locate the optimum k . Now we need to find an
optimum solution of weight k .

We find a solution one vertex at a time. Namely, we can ask if we select
v1 to be in the IS, will the graph G 0 = G with v1 (and all its adjacent
edges) removed have an IS of weight k � w(v1). If yes then we add v1 to
the IS and remove it. Otherwise we just remove v1. We continue this way,
one vertex at a time, and compute an optimal solution. 28 / 41



kSAT and exact kSAT

As mentioned we sometimes use kSAT to mean at most k literals per
clause and sometimes to mean exactly k literals per clause. Clearly in
either interpretation, kSAT is in NP . If we interpret kSAT as at most k
literals per clause then again 3SAT is a special case of kSAT for all k � 4.

What about exact kSAT . How do we show that it is NP hard? Here is the
simple idea. Lets just do exact 3SAT Consider a clause C = (x _ y) that
has just 2 literals. We transform that clause to (x _ y _ z) ^ (x _ y _ z̄).
For a unit clause C = (x) we can first transform to (x _ y) ^ (x _ ȳ .
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Clay Math Institute Millenium Problems:
$1,000,000 each

1 Birch and Swinnerton-Dyer Conjecture

2 Hodge Conjecture

3 Navier-Stokes Equations

4 P = NP?

5 Poincaré Conjecture (Solved)1

6 Riemann Hypothesis

7 Yang-Mills Theory

1
Solved by Grigori Perelman 2003: Prize unclaimed
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How important is the P vs NP question

Lance Fortnow has an article on P and NP in the September 2009
Communications of the ACM, in which he says

“The P versus NP problem has gone from an interesting problem
related to logic to perhaps the most fundamental and important
mathematical question of our time, whose importance only grows
as computers become more powerful and widespread.”

Claim: It is worth well over the $1,000,000
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Other long standing and fundamental open problems
in complexity theory

In the following disucssions about closure unbder complement, we are
considering 

p

to mean tramnsformation and not the general reduction.

For any language L (i.e., decision problem), we define L̄ = {x : x /2 L}.
Similarly, for any class C of languages the class co � C = {L̄ : L 2 C}.
An open problem related to the P vs NP issue is the whether or not
NP = co � NP .

Conjecture: SAT /2 NP

We have the following fact: NP = co � NP i↵ L̄ 2 NP for some (any)
NP-complete language L.

As mentioned before It is widely believed that NP 6= co � NP
How would you verify that a CNF formula F is not satisfiable?
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Why we believe integer factoring is not NP-hard

As mentioned, some cryptographic schemes (i.e. for decoding a
cryptographically encoded message) rely on the assumption that factoring
can not be done e�ciently (even in some average case sense).

However, it is believed that factoring is not NP-hard. To make this
comment precise, consider the following decision problem which can be
used to factor an integer: FACTOR = {(x ,m)|x has a proper factor  m}.
It should be clear that FACTOR is in NP .

Claim: co � FACTOR = {(x ,m)|x /2 FACTOR} is in NP . Hence we do
not believe FACTOR can be NP complete.

To see this, we first note that that PRIME = {x |x is a prime number} is
now known to be in P . (It is su�cient to know that PRIME is in NP
which was known since the early 1970’s.) Then a certificate y for (x .m)
being in co � FACTOR is the prime factorization
y = (p1, e1, p2, e2, . . . pr , er ) of x which can be verified by checking that
each p

i

is a prime and that x = (pe11 · pe22 . . . · per
r

)
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More complexity theory issues

After sequential time, the most studied complexity measure is space. If
one maintains the input so that it is “read-only”, it is meaningful to
consisder sublinear (e.g. log n) space bounds.

Analogous to deteriministic (resp. non-deterministic) time bounded classes
DTIME (T ) (resp. NTIME (T ) we can define space bounded classes.

n contrast to what is widely believed about sequential time bounded
classes, we have the following two Theorems for “reasonable” space
bounds S(n) � log n:

NSPACE (S) ✓ DSPACE (S2)
NSPACE (S) = co � NSPACE (S)

It is an open problem as to whether or not NSPACE (S) = DSPACE (S).

It is also clear (for the models of computation we consider) that both
DSPACE (S) and NSPACE (S) are contained in [

c

DTIME (cS(n)). Why?
Hence DSPACE (log n) ✓ P .

Conjecture: DSPACE 6= P 34 / 41



And more complexity issues

Later in the course we will devote a lecture to randomized algorithms. For
a number of computational problems, the use of randmization will provide
the best known time bounds. And in some computational settings (e,g,
cryptography, sublinear time algorithms), randomization is necessary.

With regard to complexity theory, analgous to the class P of polynomial
time decisions, we have three di↵erent classes of decisions problems
solvable in randomized polynomial time. These classes are ZPP (expected
polynomial time, no error), RP (polynomial time, one sided error) and
BPP (polynomial time, two sided error).

While it is clear that RP \ co � RP = ZPP ✓ RP ✓ BPP , it is not known
if any of these inclusions are proper.

Moreover, it is not known if RP = P or BPP = P . Lately, some prominent
complexity theorists conjecture tht BPP = P in which case, ignoring
polynomial factors, randomization can be avoided.
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One final complexity comment

Although the P vs NP issue is not resolved, there are “natural” problems
which provably require (say) exponential time. (In fact, there are some
problems which require “much more” than exponential time.

Without defining things carefully, one such problem is the decision problem
for the first order theory of the reals. That is, we want to decide when a
fully quantified first order arithmetic formual is true or false when the
variables are real numbers.

For example, the statement 8x > 0, 9y [y2 = x ] is true for real numbers
but false for say the integers or rational numbers. Similarly, 9y [y2 = �1]
is true for the complex numbers but false for the real numbers.
While it is known that this decision problem is computable (in time ⇡ 22

n

)
where n is the length of the 1st order statment, it is also proven that the
decision problem cannot be done in time say 2n.
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Integer Programming and Linear Programming

Our next major topic is Linear Programming (LP) . One could easily teach
an entire course on LP theory and still there would be much more to
discuss. Our interest will be mainly in using LP relaxations of Integer
Programs (IP) to obtain approximation algorithms. But still, it is
important to know a little about LP theory.

We first present Integer Programming. As an example, consider the
weighted Vertex Cover problem. Recall that in the weighted VC problem,
the input is G = (V ,E ,w) with w : V ! R and say V = {v1, v2, . . . , vn}.
We can formulate the weighted VC problem as an IP (in fact, as {0, 1}-IP)
as follows:

Minimize
P

i

w
i

x
i

Subject to x
i

+ x
i

� 1 for all (v
i

, v
j

) 2 E .
x
i

2 {0, 1}. for all i .
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The interpretation of the IP variables is that x
i

= 1 i↵ v
i

is included in the
vertex cover. Clearly the constraints force any setting of the IP variables
(x1, x2, . . . , xn) to be a valid vertex cover and the objective is precisely
what we are trying to optimize.

More generally, an IP (for a minimization problem) aims to minimize a
linear objective function subject to a set of linear and integral constraints.
That is:

Minimize
P

i

c
i

x
i

Subject to m linear constraints of the form:P
i

a
j ,ixi R b

j

where R is ,�, or = for j = 1, 2, . . . ,m.
and integral constraints x

i

2 Z.

It turns out that one can always convert an IP to a standard form where
all the inequalities are � and all the variables are in N. For a maximization
problem we want to maximize a linear function subject to a set of linear
constaints and in standard form all the linear constraints are .

In a {0, 1} IP, the integrality constraints are replaced by x
i

2 {0, 1}.
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The {0, 1} IP decision problem is NP complete

The IP decision problem is to determine if a set of linear constraints can
be satisfied by an integral solution (or a {0, 1} solution for a {0, 1} IP).
Note that we can absorb the objective function into the linear constraints
so as to determine if there is a solution at most some value.

Theorem

The {0, 1} IP decision problem is NP complete.

This should not be a surprise since we already showed how to represent
the Vertex Cover optimization problem as an IP.

The usual proof transforms a CNF formula into an IP where each clause is
represented by a linear inequality. For every propositonal variable y

i

we
have an {0, 1} IP variable x

i

where we interpret x
i

= 1 as y
i

= true and
x
i

= 0 as y
i

= false.

For example, the clause (y1 _ ȳ2 _ y3) would be represented by the
inequality x1 + (1� x2) + x3 � 1 which forces the clause to be true for a
particular settng of the variables.
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The decision problem is NP complete

Since the {0, 1} IP problem is a special case of the IP decision problem,
the IP problem is NP hard. But here is one of the rare cases that I
mentioned where it is not obvious why the IP decision problem is in NP .
The issue here is that the IP may have a solution BUT what if it is too big
and therefore cannot be a certificate.

However, using some linear algebra, it can be shown that if the IP has a
solution then it has a solution whose length is polynomial in the length of
the IP formulation.

Aside: Usually we assume that the coe�cients in an IP formulation are
either integral or rationals so that the problem can be finitely represented.

40 / 41



IP vs LP

What then is LP? LP is just like IP except now we allow rational solutions.
Assuming the coe�cients are integral or rational, if there is a solution then
there is a rational solution. Moreover, if there is a solution to the LP then
there is a solution whose variable values have lenghts bounded by a
polynomial is the length of the LP formulation and hence LP (like IP) is in
NP .

Is LP easier or harder than IP?

It turns out that any LP can be solved in polynomial time (theoretically
and in pratcice e�ciently). We probably won’t give a polynomial time
algorithm but we will discuss the history and complexity of solving LP
problems. As I said, we will mainly be interested in using LP as a big “big
hammer” using the terminology of the DPV text.
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