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Announcements

Midterm Monday, March 2. There is a TA office hour Thursday, Feb
27, 2-3PM in BA 3289. I am holding an additional office hour this
Friday, Feb 28 1:30-2:30 in my office.
Comments on the midterm:

The test during the 5-7 time slot will take place in Bahen 1130.

The test will cover divide and conquer, greedy algorithms, dynmaic
programming and network flows. Complexity theory will not be on the
midterm.

You are allowed one page (two sides) of handwritten notes.

No other aids are allowed. In particular, cell phones or smart watches
that can communicate should be accessible.

Students taking the test in the 4-6 time slot must remain in the test
room until 5:20. Students taking the test in the 5-7 time slot must
arrive by 5:20.
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More announcements

Requests for regrading are normally within one week of solutions
being discussed or posted. For assignment 1, we will accept regrading
requests up to March 2. Regrading requests for assignments must be
made on Markus. All requests must have a one or two paragraph
explanation as to why you think a question was not given the proper
grade.

Assignment 2 is due March 5 at 4:59. There is a correction for Q1 on
A2. The desired time bound is O(n2 ·maxi vi )
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This weeks agenda

Quick review of basic concepts relating to NP decisions problems, NP
hardness and NP completeness.

Polynomial time reductions and polynomial time transformations.

Proving 3SAT is NP complete.

How important is the P vs NP question?
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What is NP?

The class NP (Nondeterministic Polynomial Time)

NP consists of all decision problems for which a solution y (to the
associated search problem) can be verified in in polynomial time.

More specifically, a set (or language) L is in the class NP if there is a
polynomial time computable relation R(x , y) and a polynomial time
computable function f such that for all x ∈ L, there is a certificate y
such that |y | ≤ f (|x |) and R(x , y).

Examples in NP (besides everything in P)

Given an integer x (in say binary of decimal representation), is it a
composite number? (This is in fact a polynomial time computable
decision problem.)

Given a graph G , can it be vertex colored in 3 colors?

Given a set S = {ai} of integers can it partitioned into two subsets S1
and S2 such that

∑
ai∈S1 ai =

∑
ai∈S2 ai?
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P versus NP

P: Problems for which solutions/certificates can be efficiently found

NP: Problems for which solutions/certificates can be efficiently
verified

Simple fact: P ⊆ NP.

Conjecture

P 6= NP

Most computer scientists believe this conjecture.

But is seems to be incredibly hard to prove.
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Why is proving P 6= NP difficult?

One reason is that some search problems in NP turn out to be
relatively easy. An example is the maximum bipartite matching
problem introduced in Week 4). More generally, matching in any
graph is polynomial time solvable but this is not an easy result.

The matching problem for undirected graphs

Given a large group of people, we want to pair them up to work on
projects. We know which pairs of people are compatible, and (if possible)

we want to put them all in compatible pairs.

If there are 50 or more people, a brute force approach of trying all
possible pairings would take billions of years.

However in 1965 Jack Edmonds found an ingenious efficient
algorithm. So this problem is in P.

There is often a “fine line” between what is and what is not known to
be efficiently solvable (e.g. polynomial time 2SAT vs NP-hard 3SAT).
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NP-Complete Problems

These are (in a certain sense) the hardest NP problems.

A problem A is p-reducible to a problem B if an “oracle” (i.e. a
subroutine) for B can be used to efficiently solve A.

If A is p-reducible to B, then any efficient procedure for solving B can
be turned into an efficient procedure for A.

If A is p-reducible to B and B is in P, then A is in P.

Definition

A problem B is NP-complete if B is in NP and every problem A in NP is
p-reducible to B.

Theorem

If A is NP-complete and A is in P, then P = NP.

To show P = NP you just need to find a fast (polynomial-time) algorithm
for any one NP-complete problem!!!
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Conjunctive normal form propositional formulas

The SAT problem is defined in terms of inputs given as conjunctive normal
form (CNF) formulas.
Here are the standard definitions regarding CNF propositional formulas:

A literal is a propositional variable x or its negation x̄ .

A clause C = `1 ∨ `2 . . . ∨ `r is a disjunction of literals.

A CNF formula F = C1 ∧ C2 . . . ∧ Cm is a conjunction of clauses.

A CNF formula is a kCNF formula if every clause has at most k
literals. For our purposes we will abuse terminology and say that
every clause has exactly k literals. It is always assumed that no
variable appears twice in any clause.

Satisfiability

Literal. A Boolean variable or its negation. 

 
Clause. A disjunction of literals. 

 
Conjunctive normal form (CNF).  A propositional 
formula Φ that is a conjunction of clauses. 

 
SAT.  Given a CNF formula Φ, does it have a satisfying truth assignment? 

3-SAT.  SAT where each clause contains exactly 3 literals  
(and each literal corresponds to a different variable). 

 
 
 
 
 
Key application.  Electronic design automation (EDA).

21

  

€ 

Cj = x1 ∨ x2 ∨ x3

  

€ 

xi   or  xi

  

€ 

Φ =  C1 ∧C2 ∧ C3∧ C4

yes instance:  x1 = true, x2 = true, x3 = false, x4 = false

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )

Figure: An example of a 3CNF formula
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Sat and 3SAT

A formula is satisfiable if there is an assignment of truth values (i.e.
TRUE, FALSE) to the propositional variables such that the formula
evaluate to TRUE. For CNF formulas, this means that there is an
assignment of truth values such that every clause is TRUE.

SAT (resp. 3SAT) is the decision problem that determines if a CNF (resp.
3CNF) formula is satisfiable.

Following the initial results of Cook and Karp, our development of NP
complete problems rests on showing that SAT is NP complete. We have
to show how to reduce any NP decision problem to SAT.

We delay the proof of that Theorem until after some examples of
reductions. Some reductions will be relatively easy and some not.

Many research papers were written in the early 1970’s establishiing
NP-completeness for specific problems. The monograph by Garey and
Johnson was a valued reference keeping track of many examples. There
are web sites devoted to particular domains listing NP complete problems.
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A great many (literally, thousands) of problems have been shown to
be NP-complete.

Most scheduling related problems (delivery trucks, exams etc) are
NP-complete.

The following simple exam scheduling problem is NP-complete:

Example

We need to schedule N examinations, and only three time slots are
available.

We are given a list of exam conflicts: A conflict is a pair of exams
that cannot be offered at the same time, because some student needs
to take both of them.

Problem: Determine if there is a way of assigning each exam to one
of the time slots T1, T2, T3, so that no two conflicting exams are
assigned to the same time slot.

This problem is known as the graph 3-colourability problem.
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Graph 3-Colourability

Problem

Given a graph, determine whether each node can be coloured red, blue, or
green, so that the endpoints of each edge have different colours.

Imagine trying to decide this when there are say hundreds or thousands of
nodes.
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Some more remarks on graph coloring

The natural graph coloring optimization problem is to color a graph
with the fewest number of colors.
We can phrase it as a search or decision problem by saying that the
input is a pair (G , k) and then

1 The search problem is to find a k-coloring of the graph G if one exists.
2 The decision problem is to determine whether or not G has a k

coloring.
3 Clearly, solving the optimization problem solves the search problem

which in turn solves the decision problem.
4 Conversely, if we can efficiently solve an NP complete decision problem

then we can efficiently solve the search and optimization problems.
This can be shown in general for all NP-complete problems but we can
also show it explicitly for specific problems (e.g., for graph coloring as
you should try to show).

Formally it is the graph coloring decision problem which is
NP-complete. More precisely, the graph coloring decision problem for
any fixed k ≥ 3 is NP-complete. However, 2-Colorability is in P.
Search or optimization problems to which any NP-complete decision
problem can be reduced are then called NP-hard. 13 / 39



Reducing Graph 3-Colourability to 3SAT

We begin our examples of reductions between NP decision problems with
a reduction that is implied by the fact that graph 3-colouring is in NP and
hence must reduce to 3SAT which is NP-complete. This reduction would
now be considered a relatively easy reduction (certainly in hindsight) but it
illustrates how reductions can be between problems coming from what are
traditionally thought of as different research areas.

We are given a graph G with nodes, say V = {v1, v2, . . . , vn}
We are given a list of edges, say (v3, v5), (v2, v6), (v3, v6), . . .

We need to find a 3CNF formula F which is satisfiable if and only if
G can be colored with 3 colors (say red, blue, green). Note: Any
permutation or renaming of the colors does the change what follows.

We use three different types of Boolean VARIABLES
r1, r2, ..., rn (ri means node i is colored red)
b1, b2, ..., bn (bi means node i is colored blue)
g1, g2, ..., gn (gi means node i is colored green)

Here we are abusing terminology as “means” is really “intended meaning”
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Here are the CLAUSES for the formula F :

I We need one clause for each node:
(r1 ∨ b1 ∨ g1) (node 1 gets at least one color)
(r2 ∨ b2 ∨ g2) (node 2 gets at least one color)
. . .
(rn ∨ bn ∨ gn) (node n gets at least one color)

I We could put in clauses saying that no node gets colored with more
than one color but coloring a node with more than one color can only
make it more difficult to color so we really don’t need these clauses.

I We need 3 clauses for each edge: For the edge (v3, v5) we need
(r3 ∨ r5) (v3 and v5 not both red)
(b3 ∨ b5) (v3 and v5 not both blue)
(g3 ∨ g5) (v3 and v5 not both green)

The size of the formula F is comparable to the size of the graph G .

Check: G is 3-colorable if and only if F is satisfiable.
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What the previous reduction does not show

NOTE: Assuming that 3-SAT is NP-complete and showing that
3-colourability reduces to 3SAT does not prove that 3-colourability is NP
complete.

This is the wrong direction of the reduction. Given the NP-completness of
3SAT, the reduction of 3SAT to 3-colourability would show that
3-colourability is NP-hard.

It is easy to see that 3-colorability is in NP so then 3-colourability
becomes NP-complete.

Summarizing: To show that a problem Y is NP-hard, given that a problem
X is known to be NP-hard, we show that X can be reduced to Y .
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On the nature of the previous polynomial time
reduction

If we consider the previous reduction of 3-coloring to 3-SAT, it can be
seen as a very simple type of reduction.
Namely, given an input w to the 3-coloring problem, it is transformed
(in polynomial time) to say h(w) such that

w ∈ {G |G can be 3-colored} iff
h(w) ∈ {F |F is a satisfiable 3CNF formula}.

If we express the problems as decision probems, the reduction of
bipartite matching to maximum flows is also a transformation.

Polynomial time transformations

I We say that a language L1 is polynomial time transformable to L2 if there
exists a polynomial time computable function h such that

w ∈ L1 iff h(w) ∈ L2.

I The function h is called a polynomial time transformation.
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Polynomial time reductions and transformations

In practice, when we are reducing one NP problem to another NP
problem, it will be a polynomial time transformation.

We will use the same notation ≤p to denote a polynomial time
reduction and polynomial time transformation.

As we have observed before if L1 ≤p L2 and L2 ∈ P, then L1 ∈ P.

The contrapositive says that if L1 ≤p L2 and L1 /∈ P, then L2 /∈ P.

≤p is transitive

I An important fact that we will use to prove NP completeness of problems is
that polynomial time reductions are transitive.

I That is L1 ≤p L2 and L2 ≤p L3 implies L1 ≤p L3.

The proof for transformations is easy to see. For say that L1 ≤p L2
via g and L2 ≤p L3 via h, then L1 ≤p L3 via h ◦ g ;
that is, w ∈ L1 iff h(g(w) ∈ L3.
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Polynomial reductions/transformations continued

One fact that holds for polynomial time transformation but is believed
not to hold for polynomial time reductions is the following:

NP closed under polynomial time transformation

If L1 ≤p L2 and L2 ∈ NP then L1 ∈ NP.

The closure of NP under polynomial time transformations is also easy
to see. Namely,

Suppose

I L2 = {w | ∃y , |y | ≤ q(|w |) and R(w , y)} for some polynomial time relation
R and polynomial q, and

I L1 ≤p L2 via h.

Then

L1 = {x | ∃y ′, |y ′| ≤ q(|h(x)| and R ′(x , y ′)} where R ′(x , y ′) = R(h(x), y ′)
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Polynomial reductions/transformations continued

On the other hand we do not believe that NP is closed under general
polynomial time reductions.

Specifically, for general polynomial time transformations we have
L̄ ≤p L. Here L̄ = {w |w /∈ L} is the language complement of L.

We do not believe that NP is closed under language complementation.

For example, how would you provide a short verification that a
propositional formula F is not satisfiable? Or how would you
efficiently verify that a graph G cannot be 3-coloured?

While we will use polynomial time transformations between decision
problems/languages we need to use the more general polynomial time
reductions to say reduce a search or optimization problem to a
decision problem.
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So how do we show that a problem is NP complete?

Showing that a language (i.e. decision problem) L is NP complete
involves establishing two facts:

1 L is in NP

2 Showing that L is NP-hard; that is showing

L′ ≤p L for every L′ ∈ NP

Usually establishing L ∈ NP is relatively easy and is done directly in
terms of the definition of L ∈ NP.

I That is, one shows how to verify membership in L by exhibiting an
appropriate certificate. (It could also be established by a polynomial
time transformation to a known L ∈ NP.)

Establishing that L is NP − hard is usually done by reducing some
known NP complete problem L′ to L.
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But how do we show that there are any NP
complete problems?

How do we get started?

Once we have established that there exists at least one NP complete
problem then we can use polynomial time reductions and transitivity
to establish that many other NP problems are NP hard.

Following Cook’s original result, we will show that SAT (and even
3SAT ) is NP complete “from first principles”.

It is easy to see that SAT is in NP.

We will (later) show that SAT is NP hard by showing how to encode
an arbitrary “non-deterministic” polynomial time (Turing)
computation by a CNF formula. We can simply think of such a
computation as one that “guesses” a certificate (i.e. makes
non-deterministic Turing machine operations) and then verifies the
certificate.
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A tree of reductions/transformations

45

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES.  Given a set of n jobs with processing time
ti, release time ri, and deadline di, is it possible to schedule all jobs on
a single machine such that job i is processed with a contiguous slot of
ti time units in the interval [ri, di ] ?

Claim.  SUBSET-SUM ! P SCHEDULE-RELEASE-TIMES.
Pf.  Given an instance of SUBSET-SUM w1, …, wn, and target W,

! Create n jobs with processing time ti = wi, release time ri = 0, and no
deadline (di =  1 + "j wj).

! Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0

Algorithm Design by Éva Tardos and Jon Kleinberg   •    Copyright © 2005 Addison Wesley   •    Slides by Kevin Wayne

8.9  A Partial Taxonomy of Hard Problems

47

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction
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A little history of NP-completenes

In his original 1971 seminal paper, Cook was interested in theorem
proving. Stephen Cook won the Turing award in 1982

Cook used the general notion of polynomial time reducibility which is
called polynomial time Turing reducibility and sometimes called Cook
reducibility.

Cook established the NP completeness of 3SAT as well as a problem
that includes CLIQUE = {(G , k)|G has a k clique }.
Independently, in the (former) Soviet Union, Leonid Levin proved an
analogous result for SAT (and other problems) as a search problem.

Following Cook’s paper, Karp exhibited over 20 prominent problems
that were also NP-complete.

Karp showed that polynomial time transformations (sometimes called
polynomial many to one reductions or Karp reductions) were sufficient
to establish the NP completness of these problems.
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Another historical note

We should note that the concepts of polynomial time reducibility (Cook
reducibility) and polynomial time transformation (Karp reduction) have
precedents in computability theory (also called reucrsive function theory).

In computability theory, we are concerned with what is and isn’t
computable without any consideration of complexity issues.

The analogue of P are the computable decision problems (also called
recursive sets) and the analogue of NP is called the recursively enumerable
(also called semi-computable).

The analogue of Cook reduction is called Turing reduction and the
analogue of Katp reduction is called many-to-one reduction. This work
started with Turing in his 1936 paper and conituned as an active field into
the 40’s and 50’s.
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Independent Set is NP complete

The independent set problem

Given a graph G = (V ,E ) and an integer k.
Note that for every fixed k, there is a brute force |V |k time algorithm.

Is there a subset of vertices S ⊆ V such that |S | ≥ k, and for each
edge at most one of its endpoints is in S?

9

Independent Set

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there
a subset of vertices S ! V such that |S| " k, and for each edge at
most one of its endpoints is in S?

Ex.  Is there an independent set of size " 6?  Yes.
Ex.  Is there an independent set of size " 7?  No.

independent set

10

Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ! V such that |S| # k, and for each edge, at least
one of its endpoints is in S?

Ex.  Is there a vertex cover of size # 4?  Yes.
Ex.  Is there a vertex cover of size # 3?  No.

vertex cover

11

Vertex Cover and Independent Set

Claim.  VERTEX-COVER $P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V % S is a vertex cover.

vertex cover

independent set

12

Vertex Cover and Independent Set

Claim.  VERTEX-COVER $P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V % S is a vertex cover.

&

! Let S be any independent set.
! Consider an arbitrary edge (u, v).
! S independent & u ' S or v ' S  &  u ( V % S or v ( V % S.
! Thus, V % S covers (u, v).

)

! Let V % S be any vertex cover.
! Consider two nodes u ( S and v ( S.
! Observe that (u, v) ' E since V % S is a vertex cover.
! Thus, no two nodes in S are joined by an edge  & S independent set. !

Question: Is there an independent set of size 6?

Yes.
Question: Is there an independent set of size 7? No.
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3SAT reduces to Independent Set

Claim

3SAT ≤p Independent Set

Given an instance F of 3SAT with k clauses, we construct an instance
(G , k) of Independent Set that has an independent set of size k iff F
is satisfiable.
G contains 3 vertices for each clause; i.e. one for each literal.
Connect 3 literals in a clause in a triangle.
Connect literal to each of its negations.

17

Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.

18

Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional
formula ! that is the conjunction of clauses.

SAT:  Given CNF formula !, does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  

! 

Cj = x
1
" x

2
" x

3

  

! 
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i
  or  x

i
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2
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each corresponding to different variables
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3 Satisfiability Reduces to Independent Set

Claim.  3-SAT " P INDEPENDENT-SET.
Pf.  Given an instance ! of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff ! is
satisfiable.

Construction.
! G contains 3 vertices for each clause, one for each literal.
! Connect 3 literals in a clause in a triangle.
! Connect literal to each of its negations.
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3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = |!| iff ! is satisfiable.

Pf.  #  Let S be independent set of size k.
! S must contain exactly one vertex in each triangle.
! Set these literals to true.
! Truth assignment is consistent and all clauses are satisfied.

Pf  $   Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k.  !
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Subset Sum

Subset Sum

Given a set of integers S = {w1,w2, . . . ,wn} and an integer W .

Is there a subset S ′ ⊆ S that adds up to exactly W ?

Example

Given S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344} and
W = 3754.

Question: Do we have a solution?

Answer: Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.
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3SAT reduces to Subset Sum

Claim

3SAT ≤p Subset Sum

Given an instance F of 3SAT, we construct an instance of Subset
Sum that has solution iff F is satisfiable.

In the following array (next slide), rows represent integers represented
in decimal. The colun entry in each row represents one digit of the
integer. For each propositional variable we have a column specifying
that each variable has just one truth assignment (i.e., true = 1) and
for each clause we have a column saying that the clause is satisfiable.
The “dummy rows” make it possible to sum each column to 4 if and
only if there is at least one literal set to true. Note that the decimal
representation insures that addition in each column will not carry over
to the next column. As mentioned in class, we could have inserted 3
dummy rows for each clause where each dummy row would contain a
‘1’ for that clause.
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3SAT reduces to Subset Sum continued

The figure illustrates how a specific 3CNF formula is transformed into a
set of integers and a target (bottow row).
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Reviewing how to show some L is NP complete.

We must show L ∈ NP. To do so, we provide a polynomial time
verification predicate R(x , y) and polynomial length certificate y for
every x ∈ L; that is, L = {x |∃y ,R(x , y) and |y | ≤ q(|x |)}.

We must show that L is NP hard (say with respect to polynomial
time tranformations); that is, for some known NP complete L′, there
is a polynomial time transducer function h such that x ∈ L′ iff
h(x) ∈ L. This then establishes that L′ ≤p L.

Warning The reduction/transformation L′ ≤p L must be in the correct
direction and h must be defined for every input x ; that is, one must
also show that if x /∈ L′ then h(x) /∈ L as well as showing that if
x ∈ L′ then h(x) ∈ L.
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Some transformations are easy, some are not

Tranformations are (as we have been arguing) algorithms computing a
function and hence like any algorithmic problem, sometimes there are
easy solutions and sometimes not.

In showing NP-completeness it certainly helps to choose the right
known NP-complete problem to use for the transformation.

In the Karp tree, there are some transformations that are particularly
easy such as :

I IndependentSet ≤p VertexCover
I VertexCover ≤p SetCover

A transforrmation of moderate difficulty is 3SAT ≤p 3-COLOR

I am using Kevin Wayne’s slides to illustrate the transformation. See
slides for “Poly-time reductions” in
http://www.cs.princeton.edu/courses/archive/spring05/cos423/lectures.php

32 / 39

http://www.cs.princeton.edu/courses/archive/spring05/cos423/lectures.php


3CNF ≤p 3-COLOR: Outline of Transformation

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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x
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x3

not 3-colorable if all are red

true false

contradiction

If φ is a 3CNF formula in n variables and m clauses, then h(φ) = Gφ will
have 2n + 6m + 3 nodes and 3n + 13m + 3 edges.
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3CNF ≤p 3-COLOR: Consistent literals

This slide and the next slide are perhaps better thought of as illustrating
that if Φ is not satisfiable then then G is not 3 colorable.

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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not 3-colorable if all are red

true false

contradiction
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3CNF ≤p 3-COLOR: The clause gadget

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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not 3-colorable if all are red

true false

contradiction
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Gφ is 3-colourable ⇒ φ satisfiable
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3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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φ satisfiable ⇒ Gφ is 3-colourable

33

3-Colorability

Claim.  Graph is 3-colorable iff ! is satisfiable.

Pf.  "   Suppose 3-SAT formula ! is satisfiable.
! Color all true literals T.
! Color node below green node F, and node below that B.
! Color remaining middle row nodes B.
! Color remaining bottom nodes T or F as forced.  !
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Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

YES instance.

35

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

NO instance.

36

Def.  A graph is planar if it can be embedded in the plane in such a way
that no two edges cross.
Applications:  VLSI circuit design, computer graphics.

Kuratowski's Theorem.  An undirected graph G is non-planar iff it
contains a subgraph homeomorphic to K5 or K3,3.

Planarity

Planar K5:  non-planar K3,3:  non-planar

homeomorphic to K3,3

Note we are choosing precisely one green node in each clause to force
a proper colouring.
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Finally, how does one show that 3SAT is
NP-complete

We now know how to generate more and more NP-compplete problems
assumming that 3SAT is NP-complete. But how do we know that 3SAT
(or any problem if we don’t use 3SAT) is NP-complete. Without at least
one NP-hard problem to begin, we cannot generate other NP-hard
problems.

Following Cook’s original proof, we can show how we can encode Turing
machine computations in the language of propositional logic. This will
yield the desired fresult that 3SAT is NP-hard (and therefore
NP-complete).

CLRS uses a circuit value problem relying on our understanding of Boolean
circuits. Although perhaps more intuitive, there is some hand-waving in
that approach whereas the TM encoding shows how we can make
everything precise. Note: We may not be proving all the claims but argue
that there is enough detail to be convinced that this encoding of TM
computations is sufficient to obtain the dsesired result.
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Turing machines

We are using the classical one tape TM. This is the simplest variant
to formalize which will enable the proof for the NP completeness of
SAT. In the proof, we are assuming (without loss of generality) that
all time bounds T (n) are computable in polynomial time.

Claim Any reasonable (classical) computing model algorithm running
in time T (n), can be simulated by a TM in time T (n)k for some k .
Hence we can use the TM model in the definition of P and NP.

Since we are only considering decision problems we will view TMs
that are defined for decision problems and hence do not need an
output other than a reject and accept state.

Following standard notation, formally, a specific TM is defined by a
tuple M = (Q,Σ, Γ, δ, q0, qacc , qrej)

Next week, we will briefly explain (using the board) the model and
notation. Note that Q,Σ, Γ are all finite sets.
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