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Announcements and this weeks agenda

We are posting Sara Rahmati’s lecture slides. However, as Sara is
using many slides from Kevin Wayne’s web site, for copyright reasons
we are password protecting Sara’s slides. We will repeat the password
in lecture.

This week will be devoted to flow networks and an application to
bipartite matching.

Piazza has a form to help find teammates if you want to be in a team
and have not teamed up yet.

Accessability services is looking for someone to share notes taken
during the lecture. Please see link on web page under the course news
for February 2.
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Flow networks

I will be following CLRS, second edition for the basic definitions and
results concerning the computation of max flows.

We will depart from the usual convention and allow negative flows.
While intuitively this may not seem so natural, it does simplify the
development.

The DPV, KT and CLRS (third edition) texts use the more standard
convention of just having non-negative flows.

Definition

A flow network (more suggestive to say a capacity network) is a tuple
F = (G , s, t, c) where

G = (V ,E ) is a “bidirectional graph”

the source s and the terminal t are nodes in V

the capacity c : E → R≥0
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What is a flow?

A flow is a function f : E → R satisfying the following properties:

1 Capacity constraint: for all (u, v) ∈ E ,

f (u, v) ≤ c(u, v)

2 Skew symmetry: for all (u, v) ∈ E ,

f (u, v) = −f (v , u)

3 Flow conservation: for all nodes u (except for s and t),

∑

v∈N(u)

f (u, v) = 0

Note

Condition (2) and (3) are equivalent to the “flow in = flow out”
constraint if we were using the convention of only having non-negative
flows in one direction. .
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An example

a c

s

b d

t

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

The notation x/y on an edge (u, v) means

x is the flow, i.e. x = f (u, v)

y is the capacity, i.e. y = c(u, v)
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An example of flow conservation

a c

s

b d

t

a

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

For node a: f (a, s) + f (a, b) + f (a, c) = −13 + (−1) + 14 = 0

For node c :

f (c , a) + f (c , b) + f (c, d) + f (c , t) = −14 + 4 + (−7) + 17 = 0
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The max flow problem

The max flow problem

Given a flow network, the goal is to find a valid flow that maximizes the
flow out of the source node s.

As we will see this is also equivalent to maximizing the flow into the
terminal node t. (This should not be surprising as flow conservation
dictates that no flow is being stored in the other nodes.)

We let val(f ) denote the flow out of the source s for a given flow f .

We will study the Ford-Fulkerson augmenting path scheme for
computing an optimal flow.

I am calling it a “scheme” as there are many ways to instantiate this
scheme although I don’t view it as a general “paradigm” in the way I
view (say) greedy and DP algorithms.
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So why study Ford-Fulkerson?

Why do we study the Ford-Fulkerson scheme if it is not a very generic
algorithmic approach?

As in DPV text, max flow problem can also be represented as a linear
program (LP) and all LPs can be solved in polynomial time.

I view Ford-Fulkerson and augmenting paths as an important example
of a local search algorithm although unlike most local search
algorithms we obtain an optimal solution.

The topic of max flow (and various generalizations) is important
because of its immediate application and many applications of max
flow type problems to other problems (e.g. max bipartite matching).

I That is many problems can be polynomial time transformed/reduced to
max flow (or one of its generalizations).

I One might refer to all these applications as “flow based methods”.
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A flow f and its residual graph

Given any flow f for a flow network F = (G , s, t, c), we define the
residual graph Gf = (V ,Ef ), where

I V is the set of vertices of the original flow network F
I Ef is the set of all edges e having positive residual capacity

cf (e) = c(e)− f (e) > 0.

Note that c(e)− f (e) ≥ 0 for all edges by the capacity constraint.

Note

With our convention of negative flows, even a zero capacity edge (in G )
can have residual capacity.

The basic concept underlying the Ford-Fulkerson algorithm is an
augmenting path which is an s-t path in Gf .

I Such a path can be used to augment the current flow f to derive a
better flow f ′.
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An example of a residual graph
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The residual graph
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The residual capacity of an augmenting path

Given an augmenting path π in Gf , we define its residual capacity
cf (π) to be the

min
e
{cf (e) | e ∈ π}

Note: the residual capacity of an augmenting path is itself is greater
than 0 since every edge in the path has positive residual capacity.

Question: How would we compute an augmenting path of maximum
residual capacity?
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Using an augmenting path to improve the flow

We can think of an augmenting path as defining a flow fπ (in the
“residual network”):

fπ(u, v) =





cf (π) if (u, v) ∈ π
−cf (π) if (v , u) ∈ π
0 otherwise

Claim

f ′ = f + fπ is a flow in F and val(f ′) > val(f )
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Deriving a better flow using an augmenting path

a c
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The original network flow
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An augmenting path π with cf (π) = 4
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Updated res. graph with no aug. path
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The Ford-Fulkerson scheme

The Ford-Fulkerson scheme

/* Initialize */
f := 0; Gf := G
WHILE there is an augmenting path π in Gf

f := f + fπ
/* Note this also changes Gf */

ENDWHILE

Note

I call this a “scheme” rather than an algorithm since we haven’t said how
one chooses an augmenting path (as there can be many such paths)
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Ford Fulkerson as a local search

Local search is one of the most popular approaches for solving search
and optimization problems.

Local search is often considerd to be a “heuristic” since local search
algorithms are often not analyzed but seem to often produce good
results.

For both search (i.e finding any feasible solution) and optimization,
local search algorithms define some local neighborhood of a (partial)
solution S , which we will denote as Nbhd(S)
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The local search meta-algorithm

The local search meta-algorithm

Initialize S
WHILE there is a “better” solution S ′ ∈ Nbhd(S)

S := S ′

ENDWHILE

Here “better” can mean different things.
I For a search problem, it can mean “closer” to being feasible.
I For an optimization problem it usually means being an improved

solution.

There are many variations of local search and we will hopefully study
local search later but for now we just wish to observe the sense in
which Ford-Fulkerson can be seen as a local search algorithm.

I We start with a trivial initial solution.
I We define the local neighbourhood of a flow f to be all flows f ′ defined

by adding the flow of an augmenting path fπ to f .
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Many issues concerning local search

How do we define the local neighbourhood and how do we choose an
S ′ ∈ Nbhd(S)?

Can we guarantee that a local search algorithm will terminate? And if
so, how fast will the algorithm terminate?

Upon termination how good is the local optimum that results from a
local search optimization?

How can we escape from a local optimum (assuming it is not
optimal)?
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Local search issues for the Ford-Fulkerson scheme

Does it matter how we choose an augmenting path for termination
and speed of termination?

That is, does it matter how we are choosing the S ′ ∈ Nbhd(S)?
I Answer: YES, it matters but there are good ways to choose

augmenting paths so that the algorithm is poly time.
I Note that the Nbhd(S) here can be of exponential size but that is not

a problem as long as we can efficiently search for solutions in the local
neighbourhood.

Upon termination how good is the flow?
I Answer: The flow is an optimal flow. This will be proved by the max

flow - min cut theorem.
I Note that this is unusual in that for most local search applications a

local optimum is usually not a global optimum.
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The max-flow min-cut theorem

We will accept some basic facts and look at the proof of the max-flow
min-cut theorem as presented in our old CSC 364 notes.

Amongst the consequences of this theorem, we obtain that

If any implementation of the Ford Fulkerson scheme terminates, then the
resulting flow is an optimal flow.

A cut (really an s-t cut) in a flow network is a partition (S ,T ) of the
nodes such that s ∈ S and t ∈ T .

We define the capacity c(S ,T ) of a cut as
∑

u∈S and v∈T
c(u, v)

We define the flow f (S ,T ) across a cut as
∑

u∈S and v∈T
f (u, v)
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Max-flow min-cut continued

Some easy facts

One basic fact that intuitively should be clear is that

f (S ,T ) ≤ c(S ,T )

for all cuts (S ,T ) (by the capacity constraint for each edge).

And it should also be intuitively clear that f (S ,T ) = val(f ) for any
cut (S ,T ) (by flow conservation at each node).

Hence for any flow f , val(f ) ≤ c(S ,T ) for every cut (S ,T ).
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The max-flow min-cut theorem

The following three statements are equivalent:

1 f is a max-flow

2 There are no augmenting paths w.r.t. flow f (i.e. no s-t path in Gf )

3 There exists some cut (S ,T ) satisfying val(f ) = c(S ,T )
I Hence this cut (S ,T ) must be a min (capacity) cut since

val(f ) ≤ c(S ,T ) for all cuts.

Note

The name follows from the fact that the value of a max-flow = the
capacity of a min-cut
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The proof outline

1 (1) ⇒ (2) If there is an augmenting path (w.r.t. f ), then f can be
increased and hence not optimal.

2 (2) ⇒ (3) Consider the set S of all the nodes reachable from s in
the residual graph Gf .

I Note that t cannot be in S and hence (S ,T ) = (S ,V − S) is a cut.
I We also have c(S ,T ) = val(f ) since f (u, v) = c(u, v) for all edges

(u, v) with u ∈ S and v ∈ T .

3 (3) ⇒ (1) Let f ′ be an arbitrary flow. We know val(f ′) ≤ c(S ,T )
for any cut (S ,T ) and hence val(f ′) ≤ val(f ) for the cut constructed
in (2).

22 / 37



The proof outline

1 (1) ⇒ (2) If there is an augmenting path (w.r.t. f ), then f can be
increased and hence not optimal.

2 (2) ⇒ (3) Consider the set S of all the nodes reachable from s in
the residual graph Gf .

I Note that t cannot be in S and hence (S ,T ) = (S ,V − S) is a cut.
I We also have c(S ,T ) = val(f ) since f (u, v) = c(u, v) for all edges

(u, v) with u ∈ S and v ∈ T .

3 (3) ⇒ (1) Let f ′ be an arbitrary flow. We know val(f ′) ≤ c(S ,T )
for any cut (S ,T ) and hence val(f ′) ≤ val(f ) for the cut constructed
in (2).

22 / 37



The proof outline

1 (1) ⇒ (2) If there is an augmenting path (w.r.t. f ), then f can be
increased and hence not optimal.

2 (2) ⇒ (3) Consider the set S of all the nodes reachable from s in
the residual graph Gf .

I Note that t cannot be in S and hence (S ,T ) = (S ,V − S) is a cut.
I We also have c(S ,T ) = val(f ) since f (u, v) = c(u, v) for all edges

(u, v) with u ∈ S and v ∈ T .

3 (3) ⇒ (1) Let f ′ be an arbitrary flow. We know val(f ′) ≤ c(S ,T )
for any cut (S ,T ) and hence val(f ′) ≤ val(f ) for the cut constructed
in (2).

22 / 37



A consequence of the max-flow min-cut theorem

Corollary

If all capacities are integral (or rational), then any implementation of the
Ford-Fulkerson algorithm will terminate with an optimal integral max flow.

Rational capacities

Why does the claim about integral capacities imply the same for rational
capacities?
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The runtime of Ford-Fulkerson

Observation

Each augmenting path has residual capacity at least one.

The max-flow min-cut theorem along with the above observation
ensures that with integral capacities, Ford-Fulkerson must always
terminate and the number of iterations is at most:

C = the sum of edge capacities leaving s.

Notes

There are bad ways to choose augmenting paths such that with
irrational capacities, the Ford-Fulkerson algorithm will not terminate.

However, even with integral capacities, there are bad ways to choose
augmenting paths so that the Ford-Fulkerson algorithm does not
terminate in polynomial time.
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Bad example for naive Ford-Fulkerson

a

s

b

t

X

X

X

X

1

Figure: The numbers denote the capacities of the edges.

The max-flow is clearly 2X .

A naive Ford-Fulkerson algorithm could alternate between
I pushing a 1 unit flow along the augmenting path s → a→ b → t
I pushing a 1 unit flow along the augmenting path s → b → a→ t

This would resul in 2X iterations, which is exponential if say X is
given in binary.
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Some ways to achieve polynomial time

Choose an augmenting path having shortest distance: This is the
Edmonds-Karp method and can be found in CLRS. It has running
time O(nm2), where n = |V | and m = |E |.
There is a “weakly polynomial time” algorithm in KT

I Here the number of arithmetic operations depends on the length of the
integral capacities.

I It follows that always choosing the largest capacity augmenting path is
at least weakly polynomial time.

There is a history of max flow algorithms leading to a recent O(mn)
time algorithm (see http://tinyurl.com/bczkdfz).

Although not the fastest, next lecture I will present Dinitz’s algorithm
which has runtime O(n2m).

I A shortest augmenting-path method based on the concept of a
blocking flow in the leveled graph.

I Has an additional advantage (i.e. an improved bipartite matching
bound) beyond the somewhat better running time of Edmonds-Karp.
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An application of max-flow: the maximum bipartite
matching problem

The maximum bipartite matching problem

Given a bipartite graph G = (V ,E ) where
I V = V1 ∪ V2 and V1 ∩ V2 = ∅
I E ⊆ V1 × V2

Goal: Find a maximum size matching.

We do not know any efficient DP or greedy
optimal algorithm for solving this problem.

But we can efficiently reduce this problem
to the max-flow problem.

a

b

c

d

e

x

y

z

w

Persons Jobs
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The reduction

a

b

c

d

e

x

y

z

w

s t

Persons Jobs

Figure: Assign every edge of the network flow a capacity 1.
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The reduction preserves solutions

Claims

1 Every matching M in G gives rise to an integral flow fM in the newly
constructed flow network FG with val(fM) = |M|

2 Conversely every integral flow f in FG gives rise to a matching Mf in
G with |Mf | = val(f ).

Let m = |E |, n = |V |

Time complexity: O(mn) using any Ford Fulkerson algorithm since
the max flow is at most n and C = n since all edge capacities are
integral and set to 1.

Dinitz’s algorithm can be used to obtain a runtime O(m
√
n).
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A few more comments on this reduction

When we get to our next big topic (NP completeness), we will be
focusing on decision problems and as a decision problem we have
|M| ≥ k iff val(fM) ≥ k .

The reduction we are using is very efficient (linear time in the
representation of the graph) and it is a special type of polynomial
time reduction which we will call a polynomial time transformation.

Alternating and augmenting paths in graphs

There is a graph theoretic concept of an augmenting path relative to a
matching (in an arbitrary graph).

An alternating path π relative to a matching M is one whose edges
alternate between edges in M and edges not in M.

An augmenting path is an alternating path that starts and ends with
an edge not in M.

The reduction provides a 1-1 correspondence between augmenting
paths in the bipartite G wrt. Mf and augmenting paths in GfM .
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Can this reduction be extended to a maximum edge
weighted matching

In the weighted bipartite matching bipartite matching problem, we are
given an edge weighted bipartite graph G = (V ,E ) with V = V1 ∪V2

(a disjoint partition) and with say integral weights w : E → N
Goal: Compute a matching M so as to maximize

∑
e∈M w(e).

A “reaasonable” idea is to extend the unweighted reduction by again
forming a flow network with distinguished source s and terminal t
nodes.

We could then set the capacities of the edges as follows:
I c(x , y) = w(x , y) for all (x , y) ∈ E
I c(s, x) = maxy{w(x , y) : x ∈ V1}
I c(y , t) = maxx{w(x , y) : y ∈ V2}

Why doesn’t this work?
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Edge disjoint paths: another similar max flow
application

A problem of interest in fault tolerant networks is to ensure that there
are sufficiently many edge disjoint paths between any two given nodes.

Given a directed graph G = (V ,E ) with distinguished source s and
terminal t nodes, the goal is to compute the the maximum number of
edge disjoint paths from s to t.

Similar to the bipartite matching transformation, we view G as a flow
network FG by setting the capacity of all edges equal to 1.

Once again, because of integrality and unit capacities, we can argue
that there are k edge-disjoint paths in G iff FG has max (integral)
flow k .

The max flow-min cut theorem implies Menger’s theorem which states
that the maximum number of edge-disjoint s − t paths in a directed
graph is equal to the minimum number of edges in an s − t cut.

The same theorem holds for undirected graphs.
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Another application of max flow-min cut

We consider an application of min cuts. The problem we wish to consider
is the following binary classification problem where we want to claasify
(label) vertices by one of two labels, say a and b.

We are given an edge and vertex labelled graph G = (V ,E , p, λ) where
p : E → R≥0, and λ : V × {a, b} → R≥0.

Our goal is to define a labeling ` : V → {a, b} so that `(vi ) is the label
given to vertex vi .

We interpret ai = λ(vi , a) (resp. bi = λ(vi , b) ) as the benefit we gain
from labeling node vi as a (resp. the benefit by labelling vi as b). We
interpret pij as the cost of labeling vi and vj by different labels.

In fact, I am just now discussing section 7.10 of the text which is titled
image segmentation which is the problem of classifying pixels (i.e., nodes)
in a grid graph where the labels correspond to foregound and background
in an image. However, when reading this section, there is nothing special
about grid graphs or the interpretation of the edge and vertex labels.
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The objective of the binary classification problem

We want to label the vertices and lets call A, the set of nodes labelled as a
and B, the set of nodes labeled b.
The goal is to maximize the following objective:

q(A,B) =
∑

vi∈A
ai +

∑

vi∈B
bi −

∑

(i .j):(`(vi )6=`(vj )

pij

We want to eventually restate this problem as a minimization problem.
We first restate the problem in the following way:
Let Q =

∑
i (ai + bi ). Then the equivalent objective is to maximize

Q(A,B) = Q −
∑

vi∈A
bi −

∑

vi∈B
ai −

∑

(i .j):`(vi )6=`(vj )

pij

The is equivalent then to minimizing:

q′(A,B) =
∑

vi∈A
bi +

∑

vi∈B
ai +

∑

(i .j):`(vi )6=`(vj )

pij
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Minimizing q′ as a min cut problem

This is similar to the way we reduced (or transformed) maximizing the size
of a matching in a bipartite graph to computing a maximum flow in a
related flow network.

Namely, we want change the graph into a network flow graph. Each edge
will become two directed edges and we will have new source s and target t
nodes where s (resp t) will now be thought of as super node representing
nodes labeled as a (resp. as a super node representing nodes labeled b).

We will place capacities between the source s and other nodes to reflect
the cost of a “mislabel” and similarly for the terminal t.

The min cut will then correspond to a min cost labelling. We construct
the flow network F = (G ′, s, t, c) such that

G ′ = (V ′,E ′)

V ′ = V ∪ {s, t}
E ′ = {(u, v)|u 6= v ∈ V } ∪ {(s, u)|u ∈ V } ∪ {(u, t)|u ∈ V }
c(i , j) = c(j , i) = pi ,j ; c(s, i) = ai ; c(i , t) = bi
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Depicting the transformation of the binary labeling
problem to the min cut problemImage segmentation

Consider min cut (A, B) in G ʹ. 
 A = foreground. 

 

 

Precisely the quantity we want to minimize.
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Figure: Figure taken from Kevin Wayne’s slides
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The more general metric labeling problem

The binary classification problem is a special case of the following more
general problem called metric labeling, later considered in the section 12.6
of the text when discusasing approximation algorithms.

The input is an edge weighted graph G = (V ,E ), a set of labels
L = {a1, . . . , ar} in a metric space with distance metric d , and
functions w : E → R≥0 and λ : V × L→ R≥0.

We want to construct a labeling ` : V → L

β(u, aj) is the benefit of giving label aj to node u, and d represents
the distance between labels.

Goal: Find a labelling λ : V → L of the nodes so as to maximize∑
u β(u, λ(u))−

∑
(u,v)∈E w(u, v) · d((`(u), `(v))

For example, the nodes might represent documents, the labels are
topics, and the edges are links between documents weighted by the
importance of the link.

When there are 3 or more labels, the problem is NP-hard even for the
case of the {0,1} metric d where d(ai , aj) = 1 for ai 6= aj .

37 / 37


	Week 5

