
CSC373: Algorithm Design, Analysis and
Complexity

Winter/Spring 2020

Allan Borodin and Sara Rahmati

Week of January 20-24, 2020

1 / 48

Week 3 : Annoucements and agenda

Assignment 1 was posted on January 12 and is due Thursday,
February 6 at 4:59 PM. There will be a small bonus question to be
posted tomorrow around 10AM.
The quiz (at end of tutorial) covers divide and conquer and greedy
algorithms.

Some questions regarding Assignment 1 on Piazza. We do not monitor
everyday. We try to answer questions posed on piazza but questions can
also be answered in the lecture or the tutorials or by fellow students.

Some smalll changes/clarifications with respect to Assignment 1.

Rewording of question 4, part b. In your example for a 3-colorable
graph G such that the greedy algorithm does not optimally colour G ,
you can order the vertices in any way which then fixes the way the
bgraph is coloured.
In question 3, we changed ”1 ≤ i < j ≤ n” to ”1 ≤ i ≤ j ≤ n”.
In question 2, polynomial inputs and outputs are given in terms of
their coefficients. Questions?

2 / 48

This weeks agenda

1 Finishing up greedy algorithms (for now)
I Dijkstra’s algorithm: greedy or dynamic programming?
I Summarizing the greedy paradigm
I Some quick concluding remarks on greedy algorithms

2 Begin dynamic programming (DP). Getting to DP quickly so
assignment questions will be (more) understandable.

I The dynamic programming (DP) paradigm
I The weighted interval selection problem
I The knapsack problem
I The edit distance and longest common subsequence problems.
I Shortest and least cost problems in directed graphs
I The matrix chain problem

3 / 48

Dijkstra’s algorithm

We assume that you may have already seen Dijskstra’s algorithm so we
will not spend too much time on this algiorithm. But we do assume that
you understand this algorithm and the problem it is solving.

We are given an edge weighted directed graph G = (V ,E , d) with a
starting node s and a non negative cost or distance function d : E → R≥0.

3.3. SHORTEST PATHS IN A GRAPH 73

3.3 Shortest Paths in a Graph

Some of the basic algorithms for graphs are based on greedy design principles. Here we apply

a greedy algorithm to the problem of finding shortest paths, and in the next section we look

at the construction of minimum-cost spanning trees.

As we’ve seen, graphs are often used to model networks in which one travels from one

point to another — traversing a sequence of highways through interchanges, or traversing

a sequence of communication links through intermediate routers. As a result, a basic algo-

rithmic problem is to determine the shortest path between nodes in a graph. We may ask

this as a point-to-point question: given nodes u and v, what is the shortest u-v path? Or

we may ask for more information: given a start node s, what is the shortest path from s to

each other node?

The concrete set-up of the shortest paths problem is as follows. We are given a directed

graph G = (V, E), with a designated start node s. We assume that s has a path to each

other node in G. Each edge e has a length ℓe > 0, indicating the time (or distance, or cost)

it takes to traverse e. For a path P , the length of P — denoted ℓ(P) — is the sum of the

lengths of all edges in P . Our goal is to determine the shortest path from s to each other

node in the graph. We should mention that although the problem is specified for a directed

graph, we can handle the case of an undirected graph by simply replacing each undirected

edge (u, v) of length ℓ by two directed edges (u, v) and (v, u), each of length ℓ.

In 1959, Edsger Dijkstra proposed a very simple greedy algorithm to solve the single-

source shortest paths problem. We begin by describing an algorithm that just determines the

length of the shortest path from s to each other node in the graph; it is then easy to produce

the paths as well. The algorithm maintains a set S of vertices u for which we have determined

a shortest-path distance d(u) from s; this is the “explored” part of the graph. Initially

S = {s}, and d(s) = 0. Now, for each node v ∈ V−S, we determine the shortest path the can

be constructed by traveling along a path through the explored part S to some u ∈ S, followed

by the single edge (u, v). That is, we consider the quantity d′(v) = min
e=(u,v):u∈S

d(u) + ℓe. We

choose the node v ∈ V−S for which this quantity is minimized, add v to S, and define d(v)

to be the value d′(v).

Dijkstra’s Algorithm (G, ℓ)
Let S be the set of explored nodes.

For each u ∈ S, we store a distance d(u).
Initially S = {s} and d(s) = 0.
While S ≠ V

Select a node v /∈ S with at least one edge from S for which

d′(v) = min
e=(u,v):u∈S

d(u) + ℓe is as small as possible.

Add v to S and define d(v) = d′(v).
EndWhile

Figure: Dijkstra’s algorithm from DPV text

4 / 48

Comments on Dijkstra’s algorithm

Dijkstra’s algorithm is a seminal algorithm and the basis for navigation
systems.

As long as there are no negative cycles, the meaning of a “least cost path”
is well defined even if there are negative cost edges.

The assumption that edges have non-negative costs is necessary for
Dijkstra’s algorithm. FInd an example for which Dijkstra will not result in
shortest paths.

Is Dijkstra’s algorithm a greedy algorithm?
This rather “academic question” brings us back to the question as to what
is a greedy algorithm. What is the objective of the algorithm?

When the objective if to find a least cost path from s to all nodes v ∈ V ,
then Dijkstra’s algorithm is a greedy algorithm (within the informal
paradigm which we first described and within a more precise definition
which we will mention next). It is an adaptive order greedy algorithm in
the sense that the next edge that will be considered and greedily added to
the set S depends on what edges are already in S .

5 / 48

Comments on Dijkstra’s algorithm

Dijkstra’s algorithm is a seminal algorithm and the basis for navigation
systems.

As long as there are no negative cycles, the meaning of a “least cost path”
is well defined even if there are negative cost edges.

The assumption that edges have non-negative costs is necessary for
Dijkstra’s algorithm. FInd an example for which Dijkstra will not result in
shortest paths.

Is Dijkstra’s algorithm a greedy algorithm?
This rather “academic question” brings us back to the question as to what
is a greedy algorithm. What is the objective of the algorithm?
When the objective if to find a least cost path from s to all nodes v ∈ V ,
then Dijkstra’s algorithm is a greedy algorithm (within the informal
paradigm which we first described and within a more precise definition
which we will mention next). It is an adaptive order greedy algorithm in
the sense that the next edge that will be considered and greedily added to
the set S depends on what edges are already in S .

5 / 48

Summarizing the greedy paradigm

Informally, (most) greedy algorithms consider one input item at a
time and make an irrevocable (“greedy”) decision about that item
before seeing more items.

To make this precise for any given problem we have to say
1 how input items are represented ; for example, what other information

could we put into the representation of an interval?
2 how an algorithm determines the order in which input items are

considered.

Key to formalizing our intuitive idea of a greedy algorithm: we need
to define the class of orderings of the input items that will be allowed.
We cannot allow any ordering of the input set or else one can usually
take (say) exponential time to compute an “optimal ordering”.

If we try to make this precise by stating that the ordering must be
done in say time O(n log n) (or even poly(n)) then we are in the
situation of trying to prove that something cannot be done in a given
time bound. The Turing tarpit

6 / 48

One way to formalize how to order

For a given problem, assume that input items belong to some set J .

For any execution of the algorithm, the input is a finite subset I ⊂ J .

Let f : J → < be any function; that is, we do not place any
restriction on the complexity or even the computability of the
function.

Then for any actual input set I = {I1, . . . , In}, the function f induces
a total order on the input set (where we can break ties using the
index of the input items as given).

In a fixed order the function f is set initially. In an adaptive order,
there can be a different function fi in each iteration i with fi
depending on the items considered in iterations j < i .

7 / 48

Jeff Erickson’s comment on greedy algorithms

Algorithms Lecture 5: Dynamic Programming [Fa’10]

first, then the subproblems that depends only on base cases, and so on. More formally, the
dependencies you identified in the previous step define a partial order over the subproblems;
in this step, you need to find a linear extension of that partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and you
know how to solve each subproblem. So do that! If your data structure is an array, this
usually means writing a few nested for-loops around your original recurrence. You don’t
need to do this on homework or exams.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if you try
to build up answers in the wrong order, your algorithm won’t work!

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
Well. . . hardly ever.6

A different lecture note describes the effort required to prove that greedy algorithms are correct, in
the rare instances when they are. You will not receive any credit for any greedy algorithm for any
problem in this class without a formal proof of correctness. We’ll push through the formal proofs
for several greedy algorithms later in the semester.

5.5 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the minimum
number of letter insertions, letter deletions, and letter substitutions required to transform one word into
another. For example, the edit distance between FOOD and MONEY is at most four:

6Greedy methods hardly ever work! So give three cheers, and one cheer more, for the hardy Captain of the Pinafore! Then
give three cheers, and one cheer more, for the Captain of the Pinafore!

7

8 / 48

DP and Linear programming: two sledgehammers of
the algorithmic craft

The following is the first paragraph of chpater 6 of DPV.

Chapter 6

Dynamic programming

In the preceding chapters we have seen some elegant design principles—such as divide-and-
conquer, graph exploration, and greedy choice—that yield definitive algorithms for a variety
of important computational tasks. The drawback of these tools is that they can only be used
on very specific types of problems. We now turn to the two sledgehammers of the algorithms
craft, dynamic programming and linear programming, techniques of very broad applicability
that can be invoked when more specialized methods fail. Predictably, this generality often
comes with a cost in efficiency.

6.1 Shortest paths in dags, revisited

At the conclusion of our study of shortest paths (Chapter 4), we observed that the problem is
especially easy in directed acyclic graphs (dags). Let’s recapitulate this case, because it lies at
the heart of dynamic programming.
The special distinguishing feature of a dag is that its nodes can be linearized; that is, they

can be arranged on a line so that all edges go from left to right (Figure 6.1). To see why
this helps with shortest paths, suppose we want to figure out distances from node S to the
other nodes. For concreteness, let’s focus on node D. The only way to get to it is through its

Figure 6.1 A dag and its linearization (topological ordering).

B

DC

A

S E
1

2

4 1

6

3 1

2

S C A B D E4 6

3

1

2

1

1

2

169

9 / 48

My view of greedy algorithms

First, the previous comments are in the context of emphasizing DP
and LP algorithms for optimization problems and were a deliberate
overstating of the point.
My view of greedy algorithms is that while they may not often be
optimal or as good as more sophisticated algorithms, there are many
cases where they work well either in terms of provable approximations
or “in practice”.
Moreover, in some cases we imediately need something that works
and knowing some basic approaches to a problem becomes a starting
point. If nothing esle, greedy algorithms can be a benchmark for
comparison against more sophisticated algorithms.
DP algorithms, once they are formulated, often seem quite apparant.
But coming up with a correct DP formulation is often not so obvious.
In contrast, coming up with a correct (albeit possibly one having poor
performance) greedy algorithm is usually easy to do.
Finally, there are applications (e.g. auctions) where conceptual
simplicity is a virtue (and maybe even a necessity) in itself.

10 / 48

Dynamic programming - what’s in a name

The followings Bellman quote in Erickson’s notes on dynamic
programming explain the origins of the term. Richard Bellman introduced
this algorithmic technique during the Cold War.

Algorithms Lecture �: Dynamic Programming [Fa’��]

Those who cannot remember the past are doomed to repeat it.

— George Santayana, The Life of Reason, Book I:
Introduction and Reason in Common Sense (1905)

The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I’m not using the term lightly; I’m using
it precisely. His face would suffuse, he would turn red, and he would get violent if people
used the term ‘research’ in his presence. You can imagine how he felt, then, about the term
‘mathematical’. The RAND Corporation was employed by the Air Force, and the Air Force had
Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air
Force from the fact that I was really doing mathematics inside the RAND Corporation. What
title, what name, could I choose?

— Richard Bellman, on the origin of his term ‘dynamic programming’ (1984)

If we all listened to the professor, we may be all looking for professor jobs.

— Pittsburgh Steelers’ head coach Bill Cowher, responding to
David Romer’s dynamic-programming analysis of football strategy (2003)

� Dynamic Programming

�.� Fibonacci Numbers

�.�.� Recursive Definitions Are Recursive Algorithms

The Fibonacci numbers Fn, named after Leonardo Fibonacci Pisano¹, the mathematician who
popularized ‘algorism’ in Europe in the ��th century, are defined as follows: F0 = 0, F1 = 1, and
Fn = Fn�1 + Fn�2 for all n� 2. The recursive definition of Fibonacci numbers immediately gives
us a recursive algorithm for computing them:

R��F���(n):
if (n< 2)

return n
else

return R��F���(n� 1) +R��F���(n� 2)

How long does this algorithm take? Except for the recursive calls, the entire algorithm
requires only a constant number of steps: one comparison and possibly one addition. If T (n)
represents the number of recursive calls to R��F���, we have the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n� 1) + T (n� 2) + 1.

This looks an awful lot like the recurrence for Fibonacci numbers! The annihilator method
gives us an asymptotic bound of ⇥(�n), where � = (

p
5+ 1)/2⇡ 1.61803398875, the so-called

golden ratio, is the largest root of the polynomial r2 � r � 1. But it’s fairly easy to prove (hint,
hint) the exact solution T(n) = 2Fn+1 � 1. In other words, computing Fn using this algorithm
takes more than twice as many steps as just counting to Fn!

Another way to see this is that the R��F��� is building a big binary tree of additions, with
nothing but zeros and ones at the leaves. Since the eventual output is Fn, our algorithm must

¹literally, “Leonardo, son of Bonacci, of Pisa”

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

�

Figure: Richard Bellman quote on the naming of dynamic programming

11 / 48

What is dynamic programming?

Here is the wikipedia “definition”:

In computer science, mathematics, management science, economics and
bioinformatics, dynamic programming (also known as dynamic
optimization) is a method for solving a complex problem by breaking it
down into a collection of simpler subproblems, solving each of those
subproblems just once, and storing their solutions. The next time the same
subproblem occurs, instead of recomputing its solution, one simply looks
up the previously computed solution, thereby saving computation time at
the expense of a (hopefully) modest expenditure in storage space. (Each
of the subproblem solutions is indexed in some way, typically based on the
values of its input parameters, so as to facilitate its lookup.) The
technique of storing solutions to subproblems instead of recomputing them
is called ”memoization”.

What is the difference between divide and conquer and dynamic
programming?

12 / 48

What is dynamic programming?

Here is the wikipedia “definition”:

In computer science, mathematics, management science, economics and
bioinformatics, dynamic programming (also known as dynamic
optimization) is a method for solving a complex problem by breaking it
down into a collection of simpler subproblems, solving each of those
subproblems just once, and storing their solutions. The next time the same
subproblem occurs, instead of recomputing its solution, one simply looks
up the previously computed solution, thereby saving computation time at
the expense of a (hopefully) modest expenditure in storage space. (Each
of the subproblem solutions is indexed in some way, typically based on the
values of its input parameters, so as to facilitate its lookup.) The
technique of storing solutions to subproblems instead of recomputing them
is called ”memoization”.

What is the difference between divide and conquer and dynamic
programming?

12 / 48

Dynamic programming

Dynamic programming (DP) began as and remains a very general
algorithmic approach for solving optimization problems.

Its usage now goes beyond that but still optimization is the main use.

To begin to understand dynamic programming, we will start by
developing a DP algorithm for the weighted interval selection. Our
second example of the use of DP will be for the knapsack problem.

The weighted interval selection problem (WISP)

Goal: Find a non-intersecting set of intervals so as to maximize the sum
of interval weights (i.e., values) in the chosen set.

Can we use a greedy algorithm? (Recall Erickson’s warning.)

13 / 48

Why not use greedy for WISP?

All the possible ways of ordering the input items that we can think of
will not only fail to be optimal but can produce arbitrarily bad
solutions for some instances.

Some possible orderings: by non increasing weight, by non increasing
weight/interval length.

Moreover, for a general greedy formalization it can be proven that no
greedy algorithm can provide a good solution (in the worst case).

There are some extensions to a greedy approach which do allow
constant approximations (i.e. by allowing revocable acceptances) and
even optimality (i.e. by a local ratio/primal dual algorithm that uses a
reverse delete phase). This is another reason why one should not be
so negative about greeedy algorithms.

14 / 48

The DP approach

Let’s consider an optimal solution and once again assume that the
intervals have been sorted by non-decreasing finishing time.

Then in an optimal solution OPT , either the last interval In was
selected or it was not.

I If not, then we must be using an optimal solution for the first n − 1
intervals.

I If In is in OPT then no interval in OPT can end after time sn.

I Furthermore (and this is the essential aspect of DP), the intervals
ending by sn must be chosen optimally.

Note

Once again we will define the problem so that an interval can start
when another one ends.

We can easily modify things if we do not want to allow an interval to
start at precisely the time another ends.

15 / 48

The value/profit of an optimal solution

The previous observation leads us to compute the entries (for
i = 1, . . . , n) in the following “semantic array”

V [i] = max profit obtainable by a set of intervals which are a subset
of the first i intervals {I1, . . . , Ii}

The optimal value then is V [n].

We can also define V [0] = 0.

To compute the entries of this array, it is helpful to define

pred(i) = the largest index j such that fj ≤ si

(If we don’t allow a job to start where another ends
we would then have fj < si .)

16 / 48

Recursively computing the V [i]

V ′[0] = 0

V ′[i] = max{A,B} for i > 0, where

A = V ′[i − 1] and B = V ′[pred(i)] + wi .

Here B (resp. A) corresponds to the case that the ith interval is used
(resp. not used) in the optimum solution for the first i intervals.

We can arbitrarily assume that we take the solution corresponding to
case A when A = B.

Claim

V [i] = V ′[i] for all i = 1, 2, . . . , n.

17 / 48

Iterative vs recursive implementation

We can clearly compute the entries of V ′[i] iteratively for
i = 0, 1, . . . , n. Time bound is O(n log n) for sorting and for
computing pred[i] values.

What if we use a recursive program directly following the definition of
V ′?

I Suppose for all i = 1, 2, . . . , n− 1, interval Ii overlaps Ii+1 and no other
Ij for j > i + 1.

I This leads to the complexity recurrence

T [n] = T [n − 1] + T [n − 2]

whose solution (recall Fibonacci sequences) is exponential in n.

Memoization avoids this problem. In some sense, memoization is one
of the defining characteristics (say verses divide and conquer) of DP
algorithms.

18 / 48

Why two arrays V and V’?

The semantic array is defined to say what we are trying to compute.

The recursively defined computational array is essentially a high level
code for how to compute the entries of the semantic array.

The creative aspect of DP is coming up with an appropriate semantic
array that has to provide us with enough information to obtain the
desired result as well as being easy to compute.

And although it often seems tedious, we need a proof that V = V ′.

In fact, we should have been doing the same testing of equality for
divide and conquer algorithms.

19 / 48

Computing an optimal solution and not just the
optimal value

So far we only computed the value of an optimal solution (for WISP)
but we can easily adapt the DP solution to compute the solution as
well.

While there are somewhat more efficient ways to do this, the
conceptually simplest thing to do is to maintain an array, say S , where
S [i] contains the partial solution corresponding to the value V [i].

It should be clear from the recursion defining V ′ how to do this.

S ′[i] =


∅ if i = 0

S ′[i − 1] if V ′[i] = V ′[i − 1]

S ′[pred(i)] ∪ {i} otherwise.

20 / 48

Characteristics of dynamic programming

DP algorithms exploit the optimal substructure property of the problem
being solved. That is, an optimal solution contains within it, optimal
solutions to subproblems.

As you will have seen, the wikipedia page (and other explanations of
dynamic programming) emphasize memoization as a defining
characteristic. And it is this aspect of reusing subproblems that
distingusihes DP from divide and conquer. In fact, as one now thinks
about our divide and conquer examples, the recursive subproblems are all
disjoint and hence memoization is not needed.

Bellman argues against trying to formalize the meaning of dynamic
programming stating that although solme solutions “are forced upon us
....experience alone, combined with often laborious trial and error, will
yield suitable formulations of involved processes”.

So lets consider more examples. But first a comment about efficient
implementation.

21 / 48

A comment on efficient implementations of DP

Dai Tri Man Le (a fiormer student) makes the following observation on
implementing a DP algorithm:

One problem with using DP in practice is the memory issue. When
the program uses too much memory, it’s no longer fast. That’s
why sometimes one uses recursion instead of sequentially imple-
mented DP, although the worst cases can be terrible. Recently
I was able to improve some worst case of an algorithm used in
industry from 24 hours to 5 mins using memoization. I didn’t
even need to memorize everything, just the most recently com-
puted results, and it’s already sufficient to see the improvement.
It’s also interesting that when I didn’t restrict the size of the look
up (hash) table as much so that it can memoize more things, the
algorithm became slower. So a lot of tuning was needed for the
code to perform well.

As stated in the first week, this course is not concerned with
implementation issues, as important as they are.

22 / 48

The Knapsack problem

In the knapsack problem we are given a set of n items I1, . . . , In and a
size bound B where each item Ij = (sj , vj) with sj being the size of
the item and vj the value.

A feasible set is now a subset of items S such that the sum of the
sizes of items in S is at most the bound B.

Goal: Find a feasible set S that maximizes the sum of the values of
items in S .

Often (e.g., KT and CLRS texts) one uses wj for the “weight”
(meaning size in my terminology) of the item rather than sj but I am
avoiding that due to our earlier use of wj to denote the weight or
profit of an interval in the WISP.
In general we can allow real valued parameters but in some algorithms
need to restrict attention to integral parameters. But by scaling
inputs this is not a significant restriction.
This is known to be an NP hard problem but as we shall see it is only
“weakly NP hard”. It remains an NP hard problem even when vj = sj
for all j .

23 / 48

A first attempt

Here is a plausible DP approach. Lets assume all sizes are integral.
Suppose we consider an optimal solution and consider the last item
placed in the knapsack.

Then after placing that item in the knapsack (say having sisze s), we
have reduced the available space to B − s.

So it seems that we need to have a semantic array

V [b] = max profit/value obtainable within size bound b for 0 ≤ b ≤ B.

The recursive array

V ′[b] =

{
0 for b ≤ 0

maxj
{
V ′[b − s(j)] + v(j) : j = 1, 2, . . . , n

}
for b > 0

Does this work and if not why not?

24 / 48

A correct approach

The previous approach did not work because it allows using an item
more than once.

Instead we can use

V [i , b] = the maximum profit possible using only the first i items
and not exceeding the bound b.

The corresponding computational array is :

V ′[i , b] =

{
0 if i = 0 or b = 0

max{C ,D} if si ≤ b

where
C = V ′[i − 1, b] and D = V ′[i − 1, b − si] + vi .

This algorithm has running time O(nB) and is pseudo polynomial
time. Why is it not polynomial time?

25 / 48

A second DP algorithm for the knapsack problem

In the first algorithm, if the sizes (or the bound B) are small (i.e.
B = poly(n)) then the algorithm runs in polynomial time.

What if the values {vi} are integral and small?

Consider the following semantic array

W [i , v] =


minimum size required to obtain at least profit v using

a subset of the items {I1, . . . , Ii} if possible

∞ otherwise

The desired optimum value is max{v : W [n, v] is at most B}.

26 / 48

Corresponding computational array

The corresponding computational array is :

W ′[i , v] =


∞ if i = 0 and v > 0

0 if i ≤ 0 and v ≤ 0

min{C ,D} otherwise.

where

C = W ′[i − 1, v] and D = W ′[i − 1, v − vi] + si .

This DP remains pseudo polynomial time but now the complexity is
O(nV) where V = v1 + v2 + . . .+ vn.

27 / 48

An FPTAS for the knapsack problem

This algorithm can be used as the basis for an efficient approximation
algorithm for all input instances.

The basic idea is relatively simple:
I The high order bits/digits of the values can determine an approximate

solution (disregarding low order bits after rounding up).
I The fewer high order bits we use, the faster the algorithm but the

worse the approximation.
I The goal is to scale the values in terms of a parameter ε so that a

(1 + ε) approximation is obtained with time complexity polynomial in n
and (1/ε).

I The details are given in the DPV text (section 9.2.4) or the KT text
(section 11.8).

I Namely, KT set v̂i = d vin
εvmax
e where vmax = maxj{vj}. DPV use the

floor b c.
I The running time is O(n3/ε). Somewhat better bounds are know.

28 / 48

Looking ahead toward discussion of NP complete
problems

In term of computing optimal solutions, all “NP complete
optimization problems” (i.e. optimization problems corresponding to
NP complete decision problems) can be viewed (up to polynomial
time) as a single class of problems.

But in the world of approximation algorithms, this single class splits
into many classes of approximation guarantees. Up to our believed
complexity assumptions, we next discuss these possibilities.

Definition

1 An FPTAS (Fully Polynomial Time Approximation Scheme) algorithm is one
that is polynomial time in the encoding of the input and 1

ε .

2 A PTAS (Polynomial Time Approximation Scheme) algorithm is one that
that is polynomial in the encoding of the algorithm but can have any
complexity in terms of 1

ε .

29 / 48

Different approximation possibilities for NP
complete optimization

Given widely believed complexity claims

1 An FPTAS
I e.g. the knapsack problem

2 A PTAS but no FPTAS
I e.g. makespan (when the number of machines m is not fixed but rather

is a parameter of the problem.

3 Having a constant c > 1 approximation but no PTAS
I e.g. JISP

4 An Θ(log n) approximation and no constant approximation
I e.g. set cover Hn essentially tight.

5 No n1−ε approximation for any ε > 0
I e.g. graph colouring and MIS for arbitrary graphs

Here n stands for some input size parameter (e.g. size of the universe for set
cover and number of nodes in the graph for colouring and MIS).

30 / 48

A DP with a sightly different style

Let’s consider the single source least cost paths problem which is
efficiently solved by Dijkstra’s greedy algorithm for graphs in which all
edge costs are non-negative.

The least cost paths problem is still well defined as long as there are
no negative cycles; that is, the least cost path is a simple path.

The KT text presents the Bellman-Ford algorithm in Chapter 6.

31 / 48

Single source least cost paths for graphs with no
negative cycles

Following the DP paradigm, we consider the nature of an optimal
solution and how it is composed of optimal solutions to
“subproblems”.
Consider an optimal simple path P from source s to some node v .

I This path could be just an edge.
I But if the path P has length greater than 1, then there is some node u

which immediately proceeds v in P. If P is an optimal path to v , then
the path leading to u must also be an optimal path.

s v

u

P

32 / 48

Single source least cost paths for graphs with no
negative cycles

s v

u

P

This leads to the following semantic array:

C [i , v] = the minimum cost of a simple path with path length at most i
from source s to v . (If there is no such path then this cost is ∞.)

The desired answer (computing the minimum cost path for each
vertex) is then the single dimensional array derived by setting
i = n − 1. (Any simple path has path length at most n − 1.)

33 / 48

How to construct the computational array?

We can construct C ′[i , v] from C ′[i − 1, . . .] as follows:

s v

u

C ′[i − 1, v]

C ′[i − 1, u]

c(u, v)

Let C ′[i , v] be the minimum value among
I C ′[i − 1, v]
I C ′[i − 1, u] + c(u, v) for all (u, v) ∈ E .

34 / 48

Corresponding computational array

The computational array is defined as:

C ′[i , v] =


0 if i = 0 and v = s

∞ if i = 0 and v 6= s

min{A,B} otherwise

A = C ′[i − 1, v]

B = min
{
C ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
Why is this slightly different from before?

I Namely, showing the equivalence between the semantic and
computationally defined arrays is not an induction on the indices of the
input items in the solution.

I But it is based on some other parameter (i.e. the path length) of the
solution.

Time complexity: n2 entries × O(n) per entry = O(n3) in total.

35 / 48

Computing maximum cost path using the same DP?

To define this problem properly we want to say “maximum cost
simple path” since cycles will add to the cost of a path.

(For least cost we did not have to specify that the path is simple once
we assumed no negative cycles.)

Suppose we just replace min by max in the least cost DP. Namely,

M[i , v] = the maximum cost of a simple path with path length at most i
from

source s to v . (If there is no such path then this cost is −∞.)

36 / 48

The corresponding computational array

The corresponding computational array would be

M ′[i , v] =


0 if i = 0 and v = s

−∞ if i = 0 and v 6= s

max{A,B} otherwise

A = M ′[i − 1, v]

B = max
{
M ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
Is this correct?

37 / 48

What goes wrong?

The problem calls for a maximum simple path but the recursion

B = max
{
M ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
does not guarantee that the path through u will be a simple path as v
might occur in the path to u. The algorithm would work for a DAG.

In fact, determining the maximum cost of a simple path is NP-hard.
I A special case of this problem is the Hamiltonian path problem: does a

graph G = (V ,E) have a simple path of length |V | − 1?
I The Hamiltonian path problem is a variant of the “notorious”

(NP-hard) traveling salesman problem (TSP).

See Section 6.6 of DPV for how to use DP to reduce the complexity
from the naive O(n!) to O(n22n).

Stirling’s approximation

n! ≈
√

2πn
(
n
e

)n
38 / 48

The all pairs least cost problem

We now wish to compute the least cost path for all pairs (u, v) in an
edge weighted directed graph (with no negative cycles).

We can repeat the single source DP for each possible source node:
complexity O(n4)

We can reduce the complexity to O(n3logn) using the DP based on
the semantic array

E [j , u, v] = cost of shortest path of path length at most 2j from u to v .

What is corresponding computational array?

39 / 48

Another DP for all pairs (DPV section 6.6)

Let’s assume (without loss of generality) that V = {1, 2, . . . , n}.
We now define the semantic array

G [k , u, v] = the least cost of a (simple) path π from u to v such that the
internal nodes in the path π are in the subset {1, 2, . . . , k}.

The computational array is

G ′[0, u, v] =


0 if u = v

c(u, v) if (u, v) is an edge

∞ otherwise.

G ′[k + 1, u, v] = min{A,B}
where A = G ′[k, u, v] and B = G ′[k, u, k + 1] + G ′[k , k + 1, v].

Like the recursion for the previous array E ′[j , u, v], the recursion here
uses two recursive calls for each entry.

Time complexity: n3 entries × O(1) per entry = O(n3) in total.
40 / 48

A similar DP (using 2 recursive calls)

The chain matrix product problem (DPV section 6.5)

We are given n matrices (say over some field) M1, . . . ,Mn with Mi

having dimension di−1 × di .

Goal: compute the matrix product

M1 ·M2 · . . . ·Mn

using a given subroutine for computing a single matrix product A · B.

We recall that matrix multiplication is associative; that is,

(A · B) · C = A · (B · C).

But the number of operations for computing A · B · C generally
depends on the order in which the pairwise multiplications are carried
out.

41 / 48

The matrix chain product problem continued

Let us assume that we are using classical matrix multiplication and
say that the scalar complexity for a (p × q) times (q × r) matrix
multilication is pqr .

For example say the dimensions of A, B and C are (respectively)
5× 10, 10× 100 and 100× 50.

Then using (A · B) · C costs 5000 + 25000 = 30000 scalar operations
whereas A · (B · C) costs 50000 + 2500 = 52500 scalar ops.

Note: For this problem the input is these dimensions and not the
actual matrix entries.

42 / 48

Parse tree for the product chain

The matrix product problem then is to determine the parse tree that
describes the order of pairwise products.

At the leaves of this parse tree are the individual matrices and each
internal node represents a pairwise matrix multiplication.

Once we think of this parse tree, the DP is reasonably suggestive:

The root of the optimal tree is the last pairwise multiplication and the
subtrees are subproblems that must must be computed optimally.

43 / 48

The DP array for the matrix chain product problem

The semantic array:

C [i , j] = the cost of an optimal parse of Mi · . . . ·Mj for 1 ≤ i ≤ j ≤ n.

The recursive computationally array:

C ′[i , j] =

{
0 if i = j

min
{
C ′[i , k] + C ′[k + 1, j] + di−1dkdj : i ≤ k < j

}
if i < j

This same style DP algorithm (called DP over intervals) is also used
in the RNA folding problem (in Section 6.5 of KT) as well as in
computing optimal binary search trees (see section 15.5 in CLRS).

Essentially in all these cases we are computing an optimal parse tree.

44 / 48

	Week 3

