CSC373: Algorithm Design, Analysis and
Complexity
Winter/Spring 2020

Allan Borodin and Sara Rahmati

Week of January 13, 2020

1/44

Week 2

Announcements
@ Assignment 1 was posted on January 12 and is due Thursday,
February 6 at 4:59 PM.

@ We have been able to increase the enrollment cap by a few more
places, so if you are not registered try registering now.

@ You should all be registered on markus now. If not, then let me know.
o My office hours: Mondays 1:30-2:30 and Wednesdays 4:30-5:30

2/44

This weeks agenda

© Finish divide and conquer

>

>

randomized median/selection algorithm
The DFT and FFT

© Begin greedy algorithms

>

vV vy vVvYVvYyy

The interval scheduling problem

The greedy algorithmic paradigm

Proving optimality of greedy algorithms
Interval coloring

Kruskal and Prim MST algorithms for MST
Huffman coding

3/44

Computing the median and selecting the /" smallest
element

As a special case of the third part of the master theorem, the recurrence
T(n) = T(n/b) + O(n) implies T(n) = O(n).

We would like to design an algorithm for computing the median in an
unsorted list of n elements using only O(n) comparisons. (We can rather
more naively simply sort using time O(nlog n) comparisons.) There is a
deterministic algorithm based on this recurrence but it is simpler to
consider a randomized algorithm whose expected time is O(n).

It turns out that in trying to come up with an appropriate divide and
conquer algorithm for the median, it is “more natural” to consider the
more general problem of selecting the it" smallest (or largest) element.

The following approach is based on the partitioning idea in randomized
quicksort, and then using the intended recurrence to motivate the selection
algorithm (see sections 7.1 and 9.2 in CLRS).

4/44

In-place partition

PARTITION(A, p, 1)

1 x = Alr]

2 i =p—1

3 forj =ptor—1

4 if A[j] <x

5 i =1+1

6 exchange Ali] with A[/]
7 exchange A[i + 1] with A[r]

8 returni + 1

Figure: In-place parition 5/44

Randomized quicksort

RANDOMIZED-PARTITION (A, p,r)

1 i = RANDOM(p,T1)
2 exchange A[r] with A[i]
3 return PARTITION(A, p, 1)

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:

RANDOMIZED-QUICKSORT (4, p, 1)

1 ifp<r

2 q = RANDOMIZED-PARTITION (A4, p,7)
3 RANDOMIZED-QUICKSORT(A4, p,g — 1)
4 RANDOMIZED-QUICKSORT (A, g + 1.r)

Figure: Quicksort

6/44

Randomized selection of /" smallest in A[p],...,A[r]

RANDOMIZED-SELECT (A, p,1,1)
if p==r
return A[p]
q = RANDOMIZED-PARTITION (A, p,r)
k=q—p+1
ifi ==k // the pivot value is the answer
return A[q]
elseif i < k
return RANDOMIZED-SELECT (A4, p,q — 1,1)
else return RANDOMIZED-SELECT(A,q + 1,r,i — k)

O 00 1O\ DN B~ Wi —

Figure: Randomized selection

7/44

Randomized selection in DPV

Without worrying about the in place partitioning, here is the basic idea as
stated in DPV:

selection(Sg, k) if £ <|Sg|
selection(S, k) = ¢ v if [Sp] <k <|Sp|+1Su|
selection(Sg, k — |Sp| — [Sy]) ifk > |SL| + | Syl

For the analysis, | also like how DPV explain the expected time. As |
mentioned, choosing a random pivot in a list is likely to choose at“good
pivot” which is the it" largest for % <i< %. That is, this will occur
with probability 3. Then they claim (and this is not hard to verify) that
the expected number of trials (randomly choosing possible pivot elements)
to find a good pivots is 2. So that if T(n) is the expected time for

selection on a list of length n, the T(n) = T(n/2) + O(n).

8/44

The DFT and FFT

One of the most important procedures in signal processing is the use of
the Fast Fourier Transform (FFT). The FFT is an algorithm for computing

the Discrete Fourier Transform (DFT).
To define the DFT, we need the concept of a primitive nt" root of unity in

the complex plane. Namely, w is a primitive nt" root of unity if
QO uw =1
Q@ w #£1for0<i<n.
The DFT, is defined as a matrix vector multiplication y = V/(w,) - a where

V(wn) is a Vandermond matrix with respect to the primitive n root of
unity wp.

It turns out that V1 = %V(w;l), the Vandermode matrix with respect
to the n*" primitive root of unity w1, so that recovering a from y is also
the same process. You can veeify that | = V71V,

9/44

Defining the DFT

Yo I 1 1 1 1 o
7 Lo o w, wp™! a
Y2 . 1 a),f a);l" a)rf wi(nﬂ) a,
V3 B 1 w$ w? w2V a5
Vn—1 1w 2= 3D Ly (=De=D 4y

Figure: The n'" order DFT, where w, is a primitive n" root of unity

Note: We will assume that n = 2 for some integer k > 0. For some
applications of the FFT, we cannot make this assumption and then a more
substantial development is needed.

10/ 44

The FFT; Computing the DFT, in O(nlogn)
arithmetic operations

In general, computing a matrix vector product G,x, - z requires ©(n?)
arithmetic operations. But the Vandermonde matrix is obviously a special
matrix.

Observation 1: We can think of the matrix vector product V - a as the
evaluation of the polynomial 27;01 ajx' at the n points x; = wy, for
i=0,...,n—1

Observation 2: If wy, is a primitve nt" root of unity then Wnj2 = w? is a
primitive (5)® root of unity and wgﬁ = 1. (Recall we are assuming
n=2k)

Observation 3: w,?ﬂ = —w{,

To hopefully simplify notation, let w(,).; denote w{, so that our goal is to
evaluate a(x) at the n points w(,).; (j =0,1,...,n—1).

11/44

The FFT continued: the basic obervation

We can express the polynomial evaluatlon as follows:
n— 1

1
_ 2i 2i
i—o aix' = E2Oag,x’+xgzoag,+1x

(i.e. even terms + odd
terms)

12/ 44

The FFT continued: the basic obervation

We can express the polynomial evaluatlon as foIIows

7 Ola x' = 5 apx? +XZ, 0 apir1x?" (i.e. even terms + odd
terms)
Therefore, when x = w(p); forj =0, n-1

1 7-1
2o a,w(i Z' 0 d2iv (n)J T Wn Z: 0 32l+1w(n)1

n_q ;
= Z: o aiw n/2)k {+, =} wn 2270 @2i-10(,0). &
for k =0,1,...5 — 1 using the "{+, —} trick” as presented in DPV.

12/ 44

The FFT continued: the basic obervation

We can express the polynomial evaluatlon as follows:

n—1 -1 2i 2i
o aix' = 22 0 a2iX ’joZ2 0 a2 11X (i.e. even terms + odd

terms)
Therefore, when x = w(,,)J forj =0, , n-1

1 - -1
im0 Ai(y = 27 0 221y, +w,,2, 0 32’+1w(n)J

= Z: o aiw n/2)k {+ =} wn Z: B ai— 1w(n/2) K
for k =0,1,...5 — 1 using the "{+, —} trick” as presented in DPV.

It follows that by this rearrangement, the computation of DFT, reduces to
two instances of the DFT,, > + n scalar multiplications + n scalar
additions. Therefore T(n) =2T(n/2)+ O(n)

12/ 44

The plus-minus trick as in DPV text

72 Algorithms

Evaluate: ?«e(ggee <n-1 at: +xo —xz0 +x1 —x1 0 +Tpja1 —Tpjaoa
\\ // \\ // \\ //
2
2

Equivalently,
evaluate:

13 /44

Using the FFT to derive a fast polynomial
multiplication

We can use the FFT to derive an O(d log d) polynomial time algorithm for
multiplying two degree d polynomials. The basic idea is that a degree d
polynomial can be uniquely represented by its value at d + 1 distinct
points. The process of recovering the coefficients of the polynomial from
these d + 1 values is called interpolation.

We wish to compute the coefficients of c(x) = a(x) x b(x) from the
coefiencients of a(x) and b(x), Here is how we can do it using the FFT,

@ Let n be the smallest power of 2 such that n — 1 > 2d, the degree of
c(x). We can view a(x), b(x) and c(x) as degree n — 1 polynomials
by adding enough leading zero coeficients. Note: this will not impact
the desired asymoptotic bound.

14/ 44

Fast polynomial multiplcation continued

@ Evaluate a(x) and b(x) at the n'" roots of unity; let these values be

ug, ... Up—1 and vi,..., v,_1 (for the values of a(x) and respectively
b(x).
@ Do n scalar multiplication w; = uj - v; for i =0,...,n—1.

@ Interpolate (using the FFT with primitive root w;!) to obtain the
coefficients of ¢(x).

Something similar (but more involved) to this can be done for fast integer
integer multiplication but now we need a discrete analogue of a primitive
root of unity. This is the underlying idea of the Schonhage-Strassen fast
integer multiplcation.

15/ 44

Begin greedy algorithms
We begin by consdering a specific problem, which we can call interval
selection or interval scheduling.
Interval Scheduling Problem
@ Job j starts at s; and finishes at f;.
@ Two jobs are compatible if they don't overlap.

o Goal: find maximum subset of mutually compatible jobs.

o

time
0 1 2 3 4 5 6 7 8 9

16 /44

Interval Scheduling: Greedy Algorithm

Greedy template
@ Consider jobs in some “natural” order. What order?

@ Take each job provided it's compatible with the ones already taken.

17 /44

Interval Scheduling: Greedy Algorithm

Greedy template
@ Consider jobs in some “natural” order. What order?

@ Take each job provided it's compatible with the ones already taken.

© CEarliest start time: Consider jobs in ascending order of s;.

@ CEarliest finish time: Consider jobs in ascending order of f;.

© Shortest interval: Consider jobs in ascending order of f; — s;.

© Fewest conflicts: For each job j, count the remaining number of
conflicting jobs ¢;j. Schedule in ascending order of ¢;.

17/ 44

Interval Scheduling: Greedy Algorithm

Greedy template
@ Consider jobs in some “natural” order.

@ Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

18/ 44

A general greedy template

A general (greedy) myopic template
@ Consider input items in some “reasonable” order.

o Consider each input item and make an irrevocable (greedy) decision
regarding that input item.

Terminology and templates

We will follow the more common “greedy algorithms” terminology.
However, as mentioned in the DPV text (and following older terminology),
We think it would be better to use instead the suggestively broader class
of myopic algorithms. You may also note that the informal template for
greedy algorithms differs somewhat from that given in the DPV text. Our
view is that the “greedy aspect” of these one-pass myopic algorithms
relates to the nature of the irrevocable decision rather than the choice of
the next input item to consider. In any case, neither the above template
nor that in DPV is a precise definition. Why?

19/ 44

Optimality of EFT Greedy algorithm for unweighted
interval scheduling

The KT text suggests the following proof for the optimality of the Earliest
Finishing Time (EFT). Let S; be the set of intervals accepted by the end
of the ih iteration.

o We say S; is promising if it can be extended to an optimal solution.
@ Formally this means that for all i (0 < i < n), there exists an optimal
solution OPT; such that S; C OPT; C S;U{J(i+1),...,J(n)}.

@ By induction we can prove that S; is promising for all i which implies
that S, must be optimal. Why?

© The base case is “trivial”.
@ The inductive step is proved by cases:

Case 1: s;y1 < fi so that §5;41 = S;

Case 2A: 5,11 > fi and i +1 € OPT; so that OPT;;; = OPT;
Case 2B: s;11 > f; and i + 1 ¢ OPT; ; this is the interesting case.
What has to be done?

20 /44

Some comments on proofs

Why do we do proofs? Even though the EFT algorithm is conceptually
very simple, there were other (incorrect) possibilities so one needs a proof.

Moreover, we can gain additional insights from a proof as to what is being
used in the proof. For example, in the EFT optimality proof, we do not
need to assume that all finishing times {f;} are distinct.

Is this the only or “best” way to prove this result. Although understanding
proofs can be quite subjective, some proof methods seem to lend
themselves to some problems better than others. The “promising”
solutions method seems well suited to greedy style algorithms.

An alternative proof is by what is called a “charging argument”. In this
case, the charging argument informally wants to charge each interval of an
optimal (or arbitrary solution) to a unique interval in the greedy solution.
Charging arguments are often used in approximation algorithms.

More precisely, we want to define a 1-1 function h: OPT — S. This
would imply that |OPT| < |S|. Can you think of such a function h?

21 /44

Interval colouring

Interval Colouring Problem

@ Given a set of intervals, colour all intervals so that intervals having
the same colour do not intersect

@ Goal: minimize the number of colours used.

E

0 1t 2 3 4 5 6 7 8 9 10 Uu

Time

We use 4 colors in this example. Question: Is this optimal?

22/44

Interval colouring

Interval Colouring Problem

o Given a set of intervals, colour all intervals so that intervals having
the same colour do not intersect

@ Goal: minimize the number of colours used.

@ We could simply apply the m-machine ISP for increasing m until we
found the smallest m that is sufficient. (See the in assignment 1.)

@ Note: This is a simple example of a polynomial time reduction which
is an essential concept when we study NP-completeness. But this
would not be as efficient as the greedy algorithm to follow.

23 /44

Greedy interval colouring

o Consider the EST (earliest starting time) for interval colouring.
» Sort the intervals by non decreasing starting times

» Assign each interval the smallest numbered colour that is feasible given
the intervals already coloured.

o Recall that EST is a terrible algorithm for ISP.

@ Note: this algorithm is “equivalent” to LFT (latest finishing time
first).

Theorem
EST is optimal for interval colouring J

24 /44

Greedy Interval Colouring

Sort intervals so that 51 < s, < ... < s,
FORi=1ton
Let k := min{¢: ¢ # x(j) for all j < i such that the
Jj™ interval intersects the i interval}
o(i) =k
% The i interval is greedily coloured by the smallest non conflicting
colour.

ENDFOR

25 /44

Proof of Optimality (sketch)

@ The proof technique we will use here is also often used for proving
approximations.

@ The idea is to find some bound (or bounds) that any solution must
satisfy and then relate that to the algorithm's solution.

@ In this case, consider the maximum number of intervals in the input
set that intersect at any given point.

Observation
The number of colours must be at least this large. J

@ It remains to show that the greedy algorithm will never use more than
this number of colours.

26 /44

An example

E

] H
0 1 2 3 4 5 6 7 8 9 10 11

Time

@ The maximum of number of intersecting intervals is 4.

@ So we can't use less than 4 colors in this example.

27 /44

Why doesn’t the Greedy Colouring Algorithm
exceed this intrinsic bound?

® Recall that we have sorted the intervals by nondecreasing starting
time (i.e. earliest start time first).

@ Let kK = maximum number of intervals in the input set that intersect
at any given point.

@ Suppose for a contradiction that

the algorithm used more than k colours. J

@ Consider the first time (say on some interval /) that the greedy
algorithm would have used k + 1 of colours.

Then it must be that there are k intervals intersecting ¢.

Let s be the starting time of £.

These intersecting intervals must all include s. Why?

Hence, there are k + 1 intervals intersecting at s!

vV vy VvYy

28 /44

Greedy algorithms for the MST problem

We assume that everyone is familiar with the concept of a graph

G = (V,E) and an edge weighted graph where there is a real valued
weight function w : E — R.

We will start with the assumption that the input graph G is connected in

which case all the nodes can be connected by a tree. Such a tree is called
a spanning tree.

Our goal is to constuct a minimum spanning tree (MST); that is, we wish
to find a subset of edges E’ C E such that T = (V/, E’) is a spanning tree
minimizing > g We.

Figure: Figure 23.1 in CLRS; bold edges in a (non-unique) MST

29 /44

Kruskal’s and Prim’s greedy MST algorithms

@ We recall the graph definitions of a tree (i.e., an acyclic connected
graph) and a forest (i.e., a disjoint collectionn of trees). Kruskals
algorithm proceeds by iteratively, merging subtrees (in a forest) of the
input graph. Prim’s algorithm proceeds by iteratively extending a
subtree of the graph.

@ There is a basic fact that underlies Kruskal's and Prim's MST
algorithms and their proofs; namely, if we add an edge to a tree, then
it forms a unique cycle. Cycles can be detected by maintain sets
corresponding to components of the graph.

@ So in both Kruskal's and Prim’s algorithm, it seems reasonable to
always iteratively choose the smallest weight edge that does not form
a cycle.

30/44

Implementing Kruskal’s greedy MST algorithm

procedure kruskal (G, w)
Input: A connected undirected graph G =(V,FE) with edge
Output: A minimum spanning tree defined by the edges X

for all ueV:
makeset(u)

X={}
Sort the edges E by weight
for all edges {u,v} € £, in increasing order of weight:
if find(u) # find(v):
add edge {u,v} to X
union(u,v)

Figure: Kruskals algorithm from DPV

31/44

Proving the optimality of Kruskals MST algorithm

We can use the same inductive “promising solution” argument that was
used for the interval selection problem:

Let X; be the partial solution (i.e. forest) after the i*/ iteration. By
induction we can prove that X; is promising for all i which implies that X,
must be optimal. In the algorithm let ¢; = (u, v) be the i smallest
weight edge.

Case 1: Adding e¢; = (u, v) forms a cycle so that Xj11 = X;

Case 2A: X; U {(u, v)} is still acyclic and ejy; € OPT; so that

OPT;11 = OPT);

Case 2B: X; U {(u, v)} is still acyclic and ej+1 ¢ OPT; ; this is again the
interesting case. What has to be done?

32/44

Proving the optimality of Kruskals MST algorithm

We can use the same inductive “promising solution” argument that was
used for the interval selection problem:

Let X; be the partial solution (i.e. forest) after the i*/ iteration. By
induction we can prove that X; is promising for all i which implies that X,
must be optimal. In the algorithm let ¢; = (u, v) be the i smallest
weight edge.

Case 1: Adding e¢; = (u, v) forms a cycle so that Xj11 = X;

Case 2A: X; U {(u, v)} is still acyclic and ejy; € OPT; so that

OPT;y1 = OPT);

Case 2B: X; U {(u, v)} is still acyclic and ej+1 ¢ OPT; ; this is again the
interesting case. What has to be done?

As in the interval selection “promising proof”, we can now create a new
OPT;1 by considering the cycle C created by adding ej+1 to OPT;.
There must be another edge e € C such that w(e) > w(e;) so that we
can replace e by e;.

32/44

Lossless compression: Huffman (prefix-free)
encoding

We want to encode a set of n symbols. This would take k = log n bits per
symbol if we give each symbol a unique binary string of k bits. But in say
a document, some symbols may only occur rarely while other occur
frequently. If we want to compress the document, it would make sense (if
possible) to encode frequently occuring symbols with short strings at the
expense longer strings for less frequently occuring symbols.

One way to do this is by using a prefix-free encoding where no string (in

the encoiding) is the prefix of another string. This will guarantee that the
document can be recovered from the encoding symbol by symbol. Is this

clear?

We can represent a prefix-free code by a binary tree where the edges are

{0,1} labelled and the leaves represent the symbols. The depth of a path
then becomes the length of the encoding for the symbol at that leaf.

33/44

Prefix-free coding continued

Symbol _Codeword
A 0

B 100
(e} 101
D 11

B (3] C [20]

For a given document D, we would know the frequency of each symbol;
otherwise we might know the probability of each symbol.

Let the symbols be a1,...,a, and let f; = ﬁ be the probability of each
symbol when n; is the number of occurrences and |D| is the length of the
document.

Sort the symbols so that f; < ... < f,. Let £; be the length of the jth
least frequent symbol in the encoding.

It follows that). fi¢; is the expected length of a symbol and >, ni¢; is
the total length of the encoded document. In either case, we wish the

construct a prefix-tree so as to minimize these sums.
34 /44

Huffman algorithm from DPV text

procedure Huffman(f)
Input: An array f[l---n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i=1 to n: insert(H,7)
for k=n+1 to 2n—1:

i = deletemin(H), j=deletemin(H)

create a node numbered k with children i,j

SR = fi] + £

insert(H, k)

35/44

Interval graphs: The interval selection and coloring
problems as graph problems

There is a natural way to view the interval scheduling and colouring
problems as graph problems.

Let 7 be a set of intervals. We can construct the intersection graph
G(Z) = (V,E) where
» V=T
» (u,v) is an edge in E iff the intervals corresponding to v and v
intersect.

Any graph that is the intersection graph of a set of intervals is called
an interval graph.

The interval selection (resp. interval coloring) problem can be viewed
as the maximum independent set problem (MIS) for the class of
interval graphs.

Intersection graphs are studied for many other geometric objects and
other types of objects.

36 /44

Graph MIS and Colouring

@ Let G =(V,E) be a graph.

@ The following two problems are known to be “NP- hard to
approximate” for arbitrary graphs:

Graph MIS

@ A subset U of V is an independent set (aka stable set) in G if for all
u,v € U, (u,v) is not an edge in E.

@ The maximum independent set (MIS) problem is to find a maximum
size independent set U.

Graph colouring

@ A function ¢ mapping vertices to {1,2,..., k} is a valid colouring of
G if c(u) is not equal to c(v) for all (u,v) € E.

@ The graph colouring problem is to find a valid colouring so as to
minimize the number of colours k.

37/44

Efficient algorithms for interval graphs

o Given a set Z of intervals, it is easy to construct its intersection graph
G(2).
Note: The following is a known interesting theorem

Given any graph G, there is a linear-time algorithm to decide if G is an
interval graph and if so to construct an interval representation.

@ The MIS (resp. colouring) problem for interval graphs is the MIS
(resp. colouring) problem for its intersection graph and hence these
problems are efficiently solved for interval graphs.

» Question: Is there a graph theoretic explanation?
» YES: interval graphs are chordal graphs having a perfect elimination
ordering.

@ The minimum colouring number (chromatic number) of a graph is
always at least the size of a maximum clique.

» The greedy interval colouring proof shows that for interval graphs

the chromatic number = max clique size.

38/44

Summarizing the greedy paradigm

@ Informally, (most) greedy algorithms consider one input item at a
time and make an irrevocable (“greedy”) decision about that item
before seeing more items.

@ To make this precise for any given problem we have to say
@ how input items are represented ; for example, what other information
could we put into the representation of an interval?
@ how an algorithm determines the order in which input items are
considered.

o Key to formalizing our intuitive idea off greedy algorithm: we need to
define the class of orderings of the input items that will be allowed.
We cannot allow any ordering of the input set or else one can say
take exponential time to compute an “optimal ordering”.

o If we try to make this precise by stating that the ordering must be
done in say time O(nlogn) (or even poly(n)) then we are in the
situation of trying to prove that something cannot be done in a given
time bound. The Turing tarpit 30 /44

One way to formalize how to order

@ For a given problem, assume that input items belong to some set 7.
@ For any execution of the algorithm, the input is a finite subset Z C J.

@ Let f: J — R be any function; that is, we do not place any
restriction on the complexity or even the computability of the
function.

@ Then for any actual input set Z = {/,..., I}, the function f induces
a total order on the input set (where we can break ties using the
index of the input items as given).

@ In a fixed order the function f is set initially. In an adaptive order,
there can be a different function f; in each iteration i with f;
depending on the items considered in iterations j < i.

40/ 44

Jeff Erickson’s comment on greedy algorithms

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?

No, never!

What, never?

Well. . . hardly ever.®

41/44

End of Week 2

We ended the Wednesday night class with this rather pessimistic comment
by Jeff Erickson. Next week we will pick up where we left off after first
possibly going over some material from this week and last week.

42 /44

DP and Linear programming: two sledgehammers of
the algorithmic craft

The following is the first paragraph of chapter 6 of DPV.

In the preceding chapters we have seen some elegant design principles—such as divide-and-
conquer, graph exploration, and greedy choice—that yield definitive algorithms for a variety
of important computational tasks. The drawback of these tools is that they can only be used
on very specific types of problems. We now turn to the two sledgehammers of the algorithms
craft, dynamic programming and linear programming, techniques of very broad applicability
that can be invoked when more specialized methods fail. Predictably, this generality often
comes with a cost in efficiency.

43 /44

My view of greedy algorithms

First, the previous comments are in the context of emphasizing DP
and LP algorithms for optimizatio problems and were a deliberate
overstating of the point.

My view of greedy algorithms is that while they may not often be
optimal or as good as more sophisticated algorithms, there are many
cases where they work well either in terms of provable approximations
or “in practice”.

Moreover, in some cases we imediately need something that works
and knowing some basic approaches to a problem becomes a starting
point. If nothing esle, greedy algorithms can be a benchmark for
comparison against more sophisticated algorithms.

DP algorithms, once they are formulated, often seem quite apparant.
But coming up with a correct DP formulation is often not so obvious.
In contrast, coming up with a correct (albeit possibly one having poor
performance) greedy algorithm is usually easy to do.

Finally, there are applications (e.g. auctions) where conceptual

simplicity is a virtue in itself.)t

	Week 2

