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Week 2

Announcements

Assignment 1 was posted on January 12 and is due Thursday,
February 6 at 4:59 PM.

We have been able to increase the enrollment cap by a few more
places, so if you are not registered try registering now.

You should all be registered on markus now. If not, then let me know.

My office hours: Mondays 1:30-2:30 and Wednesdays 4:30-5:30
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This weeks agenda

1 Finish divide and conquer

I randomized median/selection algorithm
I The DFT and FFT

2 Begin greedy algorithms

I The interval scheduling problem
I The greedy algorithmic paradigm
I Proving optimality of greedy algorithms
I Interval coloring
I Kruskal and Prim MST algorithms for MST
I Huffman coding
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Computing the median and selecting the i th smallest
element

As a special case of the third part of the master theorem, the recurrence
T (n) = T (n/b) + O(n) implies T (n) = O(n).

We would like to design an algorithm for computing the median in an
unsorted list of n elements using only O(n) comparisons. (We can rather
more naively simply sort using time O(n log n) comparisons.) There is a
deterministic algorithm based on this recurrence but it is simpler to
consider a randomized algorithm whose expected time is O(n).

It turns out that in trying to come up with an appropriate divide and
conquer algorithm for the median, it is “more natural” to consider the
more general problem of selecting the i th smallest (or largest) element.

The following approach is based on the partitioning idea in randomized
quicksort, and then using the intended recurrence to motivate the selection
algorithm (see sections 7.1 and 9.2 in CLRS).
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In-place partition

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.
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Randomized quicksort

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.Figure: Quicksort
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Randomized selection of i th smallest in A[p], . . . ,A[r ]

216 Chapter 9 Medians and Order Statistics

RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION intro-
duced in Section 7.3. Thus, like RANDOMIZED-QUICKSORT, it is a randomized al-
gorithm, since its behavior is determined in part by the output of a random-number
generator. The following code for RANDOMIZED-SELECT returns the i th smallest
element of the array AŒp : : r !.

RANDOMIZED-SELECT.A; p; r; i/

1 if p == r
2 return AŒp!
3 q D RANDOMIZED-PARTITION.A; p; r/
4 k D q ! p C 1
5 if i == k // the pivot value is the answer
6 return AŒq!
7 elseif i < k
8 return RANDOMIZED-SELECT.A; p; q ! 1; i/
9 else return RANDOMIZED-SELECT.A; q C 1; r; i ! k/

The RANDOMIZED-SELECT procedure works as follows. Line 1 checks for the
base case of the recursion, in which the subarray AŒp : : r ! consists of just one
element. In this case, i must equal 1, and we simply return AŒp! in line 2 as the
i th smallest element. Otherwise, the call to RANDOMIZED-PARTITION in line 3
partitions the array AŒp : : r ! into two (possibly empty) subarrays AŒp : : q ! 1!
and AŒq C 1 : : r ! such that each element of AŒp : : q ! 1! is less than or equal
to AŒq!, which in turn is less than each element of AŒq C 1 : : r !. As in quicksort,
we will refer to AŒq! as the pivot element. Line 4 computes the number k of
elements in the subarray AŒp : : q!, that is, the number of elements in the low side
of the partition, plus one for the pivot element. Line 5 then checks whether AŒq! is
the i th smallest element. If it is, then line 6 returns AŒq!. Otherwise, the algorithm
determines in which of the two subarrays AŒp : : q ! 1! and AŒq C 1 : : r ! the i th
smallest element lies. If i < k, then the desired element lies on the low side of
the partition, and line 8 recursively selects it from the subarray. If i > k, however,
then the desired element lies on the high side of the partition. Since we already
know k values that are smaller than the i th smallest element of AŒp : : r !—namely,
the elements of AŒp : : q!—the desired element is the .i ! k/th smallest element
of AŒqC1 : : r !, which line 9 finds recursively. The code appears to allow recursive
calls to subarrays with 0 elements, but Exercise 9.2-1 asks you to show that this
situation cannot happen.

The worst-case running time for RANDOMIZED-SELECT is ‚.n2/, even to find
the minimum, because we could be extremely unlucky and always partition around
the largest remaining element, and partitioning takes ‚.n/ time. We will see that

Figure: Randomized selection
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Randomized selection in DPV

Without worrying about the in place partitioning, here is the basic idea as
stated in DPV:

64 Algorithms

2.4 Medians
The median of a list of numbers is its 50th percentile: half the numbers are bigger than it,
and half are smaller. For instance, the median of [45, 1, 10, 30, 25] is 25, since this is the middle
element when the numbers are arranged in order. If the list has even length, there are two
choices for what the middle element could be, in which case we pick the smaller of the two,
say.
The purpose of the median is to summarize a set of numbers by a single, typical value.

The mean, or average, is also very commonly used for this, but the median is in a sense more
typical of the data: it is always one of the data values, unlike the mean, and it is less sensitive
to outliers. For instance, the median of a list of a hundred 1’s is (rightly) 1, as is the mean.
However, if just one of these numbers gets accidentally corrupted to 10,000, the mean shoots
up above 100, while the median is unaffected.
Computing the median of n numbers is easy: just sort them. The drawback is that this

takes O(n log n) time, whereas we would ideally like something linear. We have reason to be
hopeful, because sorting is doing far more work than we really need—we just want the middle
element and don’t care about the relative ordering of the rest of them.
When looking for a recursive solution, it is paradoxically often easier to work with a more

general version of the problem—for the simple reason that this gives a more powerful step to
recurse upon. In our case, the generalization we will consider is selection.

SELECTION
Input: A list of numbers S; an integer k

Output: The kth smallest element of S
For instance, if k = 1, the minimum of S is sought, whereas if k = ⌊|S|/2⌋, it is the median.

A randomized divide-and-conquer algorithm for selection
Here’s a divide-and-conquer approach to selection. For any number v, imagine splitting list S
into three categories: elements smaller than v, those equal to v (there might be duplicates),
and those greater than v. Call these SL, Sv, and SR respectively. For instance, if the array

S : 2 36 5 21 8 13 11 20 5 4 1
is split on v = 5, the three subarrays generated are

SL : 2 4 1 Sv : 5 5 SR : 36 21 8 13 11 20
The search can instantly be narrowed down to one of these sublists. If we want, say, the
eighth-smallest element of S, we know it must be the third-smallest element of SR since
|SL| + |Sv| = 5. That is, selection(S, 8) = selection(SR, 3). More generally, by checking k
against the sizes of the subarrays, we can quickly determine which of them holds the desired
element:

selection(S, k) =

⎧
⎨
⎩
selection(SL, k) if k ≤ |SL|
v if |SL| < k ≤ |SL| + |Sv|
selection(SR, k − |SL|− |Sv|) if k > |SL| + |Sv|.

For the analysis, I also like how DPV explain the expected time. As I
mentioned, choosing a random pivot in a list is likely to choose at“good
pivot” which is the i th largest for |V |4 ≤ i ≤ 3|V |

4 . That is, this will occur
with probability 1

2 . Then they claim (and this is not hard to verify) that
the expected number of trials (randomly choosing possible pivot elements)
to find a good pivots is 2. So that if T (n) is the expected time for
selection on a list of length n, the T (n) = T (n/2) + O(n).
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The DFT and FFT

One of the most important procedures in signal processing is the use of
the Fast Fourier Transform (FFT). The FFT is an algorithm for computing
the Discrete Fourier Transform (DFT).

To define the DFT, we need the concept of a primitive nth root of unity in
the complex plane. Namely, ω is a primitive nth root of unity if

1 ωn = 1

2 ωi 6= 1 for 0 < i < n.

The DFTn is defined as a matrix vector multiplication y = V (ωn) · a where
V (ωn) is a Vandermond matrix with respect to the primitive nth root of
unity ωn.

It turns out that V−1 = 1
nV (ω−1n ), the Vandermode matrix with respect

to the nth primitive root of unity ω−1n , so that recovering a from y is also
the same process. You can veeify that I = V−1V .
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Defining the DFT

30.2 The DFT and FFT 913!
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The .k; j / entry of Vn is !kj
n , for j; k D 0; 1; : : : ; n " 1. The exponents of the

entries of Vn form a multiplication table.
For the inverse operation, which we write as a D DFT!1

n .y/, we proceed by
multiplying y by the matrix V !1

n , the inverse of Vn.

Theorem 30.7
For j; k D 0; 1; : : : ; n " 1, the .j; k/ entry of V !1

n is !!kj
n =n.

Proof We show that V !1
n Vn D In, the n # n identity matrix. Consider the .j; j 0/

entry of V !1
n Vn:

ŒV !1
n Vn!jj 0 D

n!1X

kD0

.!!kj
n =n/.!kj 0

n /

D
n!1X

kD0

!k.j 0!j /
n =n :

This summation equals 1 if j 0 D j , and it is 0 otherwise by the summation lemma
(Lemma 30.6). Note that we rely on ".n " 1/ $ j 0 " j $ n " 1, so that j 0 " j is
not divisible by n, in order for the summation lemma to apply.

Given the inverse matrix V !1
n , we have that DFT!1

n .y/ is given by

aj D
1

n

n!1X

kD0

yk!!kj
n (30.11)

for j D 0; 1; : : : ; n " 1. By comparing equations (30.8) and (30.11), we see that
by modifying the FFT algorithm to switch the roles of a and y, replace !n by !!1

n ,
and divide each element of the result by n, we compute the inverse DFT (see Ex-
ercise 30.2-4). Thus, we can compute DFT!1

n in ‚.n lg n/ time as well.
We see that, by using the FFT and the inverse FFT, we can transform a poly-

nomial of degree-bound n back and forth between its coefficient representation
and a point-value representation in time ‚.n lg n/. In the context of polynomial
multiplication, we have shown the following.

Figure: The nth order DFTn where ωn is a primitive nth root of unity

Note: We will assume that n = 2k for some integer k ≥ 0. For some
applications of the FFT, we cannot make this assumption and then a more
substantial development is needed.

10 / 44



The FFT; Computing the DFTn in O(n log n)
arithmetic operations

In general, computing a matrix vector product Gn×n · z requires Θ(n2)
arithmetic operations. But the Vandermonde matrix is obviously a special
matrix.

Observation 1: We can think of the matrix vector product V · a as the
evaluation of the polynomial

∑n−1
i=0 aix

i at the n points xi = ωi
n for

i = 0, . . . , n − 1.

Observation 2: If ωn is a primitve nth root of unity then ωn/2 = ω2
n is a

primitive (n2 )th root of unity and ω
n/2
n/2 = 1. (Recall we are assuming

n = 2k .)

Observation 3: ω
n
2
+j

n = −ωj
n

To hopefully simplify notation, let ω(n);j denote ωj
n so that our goal is to

evaluate a(x) at the n points ω(n);j (j = 0, 1, . . . , n − 1).
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The FFT continued: the basic obervation

We can express the polynomial evaluation as follows:∑n−1
i=0 aix

i =
∑ n

2
−1

i=0 a2ix
2i + x

∑ n
2
−1

i=0 a2i+1x
2i (i.e. even terms + odd

terms)

Therefore, when x = ω(n);j for j = 0, . . . , n-1
∑n−1

i=0 aiω
i
(n);j =

∑ n
2
−1

i=0 a2iω
2i
(n);j + ωn

∑ n
2
−1

i=0 a2i+1ω
2i
(n);j

=
∑ n

2
−1

i=0 a2iω
i
(n/2);k {+,−} ωn

∑ n
2
−1

i=0 a2i−1ωi
(n/2);,k

for k = 0, 1, . . . n2 − 1 using the “{+,−} trick” as presented in DPV.

It follows that by this rearrangement, the computation of DFTn reduces to
two instances of the DFTn/2 + n scalar multiplications + n scalar
additions. Therefore T (n) = 2T (n/2) + O(n)
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The plus-minus trick as in DPV text

72 Algorithms

Evaluate: A(x)
degree ≤ n − 1

Ae(x) and Ao(x)
degree ≤ n/2 − 1

at:

at: −x0 +x1 −x1 · · ·

· · ·x2
0

−xn/2−1+xn/2−1

x2
1 x2

n/2−1

+x0

Equivalently,
evaluate:

The original problem of size n is in this way recast as two subproblems of size n/2, followed
by some linear-time arithmetic. If we could recurse, we would get a divide-and-conquer pro-
cedure with running time

T (n) = 2T (n/2) + O(n),

which is O(n log n), exactly what we want.

But we have a problem: The plus-minus trick only works at the top level of the recur-
sion. To recurse at the next level, we need the n/2 evaluation points x2

0, x
2
1, . . . , x

2
n/2−1 to be

themselves plus-minus pairs. But how can a square be negative? The task seems impossible!
Unless, of course, we use complex numbers.
Fine, but which complex numbers? To figure this out, let us “reverse engineer” the process.

At the very bottom of the recursion, we have a single point. This point might as well be 1, in
which case the level above it must consist of its square roots, ±

√
1 = ±1.

−1 −i

−1

+1

+1

+i+1

...

The next level up then has ±
√

+1 = ±1 as well as the complex numbers ±
√
−1 = ±i, where i

is the imaginary unit. By continuing in this manner, we eventually reach the initial set of n
points. Perhaps you have already guessed what they are: the complex nth roots of unity, that
is, the n complex solutions to the equation zn = 1.

Figure 2.6 is a pictorial review of some basic facts about complex numbers. The third panel
of this figure introduces the nth roots of unity: the complex numbers 1,ω,ω2, . . . ,ωn−1, where
ω = e2πi/n. If n is even,

1. The nth roots are plus-minus paired, ωn/2+j = −ωj.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 71

Figure 2.5 Polynomial multiplication
Input: Coefficients of two polynomials, A(x) and B(x), of degree d
Output: Their product C = A · B

Selection
Pick some points x0, x1, . . . , xn−1, where n ≥ 2d + 1

Evaluation
Compute A(x0), A(x1), . . . , A(xn−1) and B(x0), B(x1), . . . , B(xn−1)

Multiplication
Compute C(xk) = A(xk)B(xk) for all k = 0, . . . , n− 1

Interpolation
Recover C(x) = c0 + c1x + · · · + c2dx

2d

2.6.2 Evaluation by divide-and-conquer
Here’s an idea for how to pick the n points at which to evaluate a polynomial A(x) of degree
≤ n− 1. If we choose them to be positive-negative pairs, that is,

±x0,±x1, . . . ,±xn/2−1,

then the computations required for each A(xi) and A(−xi) overlap a lot, because the even
powers of xi coincide with those of −xi.
To investigate this, we need to split A(x) into its odd and even powers, for instance

3 + 4x + 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4).

Notice that the terms in parentheses are polynomials in x2. More generally,

A(x) = Ae(x
2) + xAo(x

2),

where Ae(·), with the even-numbered coefficients, and Ao(·), with the odd-numbered coeffi-
cients, are polynomials of degree ≤ n/2 − 1 (assume for convenience that n is even). Given
paired points ±xi, the calculations needed for A(xi) can be recycled toward computing A(−xi):

A(xi) = Ae(x
2
i ) + xiAo(x

2
i )

A(−xi) = Ae(x
2
i )− xiAo(x

2
i ).

In other words, evaluating A(x) at n paired points ±x0, . . . ,±xn/2−1 reduces to evaluating
Ae(x) and Ao(x) (which each have half the degree of A(x)) at just n/2 points, x2

0, . . . , x
2
n/2−1.13 / 44



Using the FFT to derive a fast polynomial
multiplication

We can use the FFT to derive an O(d log d) polynomial time algorithm for
multiplying two degree d polynomials. The basic idea is that a degree d
polynomial can be uniquely represented by its value at d + 1 distinct
points. The process of recovering the coefficients of the polynomial from
these d + 1 values is called interpolation.

We wish to compute the coefficients of c(x) = a(x) ∗ b(x) from the
coefiencients of a(x) and b(x), Here is how we can do it using the FFT,

Let n be the smallest power of 2 such that n − 1 ≥ 2d , the degree of
c(x). We can view a(x), b(x) and c(x) as degree n − 1 polynomials
by adding enough leading zero coeficients. Note: this will not impact
the desired asymoptotic bound.
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Fast polynomial multiplcation continued

Evaluate a(x) and b(x) at the nth roots of unity; let these values be
u0, . . . un−1 and v1, . . . , vn−1 (for the values of a(x) and respectively
b(x).

Do n scalar multiplication wi = ui · vi for i = 0, . . . , n − 1.

Interpolate (using the FFT with primitive root ω−1n ) to obtain the
coefficients of c(x).

Something similar (but more involved) to this can be done for fast integer
integer multiplication but now we need a discrete analogue of a primitive
root of unity. This is the underlying idea of the Schonhage-Strassen fast
integer multiplcation.
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Begin greedy algorithms

We begin by consdering a specific problem, which we can call interval
selection or interval scheduling.

Interval Scheduling Problem

Job j starts at sj and finishes at fj .

Two jobs are compatible if they don’t overlap.

Goal: find maximum subset of mutually compatible jobs.Earliest-finish-time-first algorithm demo

2

time
0

C

E

1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

B

H

G

D

A

F
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Interval Scheduling: Greedy Algorithm

Greedy template

Consider jobs in some “natural” order. What order?

Take each job provided it’s compatible with the ones already taken.

1 Earliest start time: Consider jobs in ascending order of sj .
2 Earliest finish time: Consider jobs in ascending order of fj .
3 Shortest interval: Consider jobs in ascending order of fj − sj .
4 Fewest conflicts: For each job j , count the remaining number of

conflicting jobs cj . Schedule in ascending order of cj .Earliest-finish-time-first algorithm demo

2

time
0

C

E

1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

B

H

G

D

A

F
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Interval Scheduling: Greedy Algorithm

Greedy template

Consider jobs in some “natural” order.

Take each job provided it’s compatible with the ones already taken.

5

Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts
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A general greedy template

A general (greedy) myopic template

Consider input items in some “reasonable” order.

Consider each input item and make an irrevocable (greedy) decision
regarding that input item.

Terminology and templates

We will follow the more common “greedy algorithms” terminology.
However, as mentioned in the DPV text (and following older terminology),
We think it would be better to use instead the suggestively broader class
of myopic algorithms. You may also note that the informal template for
greedy algorithms differs somewhat from that given in the DPV text. Our
view is that the “greedy aspect” of these one-pass myopic algorithms
relates to the nature of the irrevocable decision rather than the choice of
the next input item to consider. In any case, neither the above template
nor that in DPV is a precise definition. Why?
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Optimality of EFT Greedy algorithm for unweighted
interval scheduling

The KT text suggests the following proof for the optimality of the Earliest
Finishing Time (EFT). Let Si be the set of intervals accepted by the end
of the i th iteration.

We say Si is promising if it can be extended to an optimal solution.

Formally this means that for all i (0 ≤ i ≤ n) , there exists an optimal
solution OPTi such that Si ⊆ OPTi ⊆ Si ∪ {J(i + 1), . . . , J(n)}.
By induction we can prove that Si is promising for all i which implies
that Sn must be optimal. Why?

1 The base case is “trivial”.
2 The inductive step is proved by cases:

Case 1: si+1 < fi so that Si+1 = Si
Case 2A: si+1 ≥ fi and i + 1 ∈ OPTi so that OPTi+1 = OPTi

Case 2B: si+1 ≥ fi and i + 1 /∈ OPTi ; this is the interesting case.
What has to be done?
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Some comments on proofs

Why do we do proofs? Even though the EFT algorithm is conceptually
very simple, there were other (incorrect) possibilities so one needs a proof.

Moreover, we can gain additional insights from a proof as to what is being
used in the proof. For example, in the EFT optimality proof, we do not
need to assume that all finishing times {fi} are distinct.

Is this the only or “best” way to prove this result. Although understanding
proofs can be quite subjective, some proof methods seem to lend
themselves to some problems better than others. The “promising”
solutions method seems well suited to greedy style algorithms.

An alternative proof is by what is called a “charging argument”. In this
case, the charging argument informally wants to charge each interval of an
optimal (or arbitrary solution) to a unique interval in the greedy solution.
Charging arguments are often used in approximation algorithms.

More precisely, we want to define a 1-1 function h : OPT → S . This
would imply that |OPT | ≤ |S |. Can you think of such a function h?
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Interval colouring

Interval Colouring Problem

Given a set of intervals, colour all intervals so that intervals having
the same colour do not intersect

Goal: minimize the number of colours used.
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1 2 3 4 5 6 7 8 9 10 11 
H 

We use 4 colors in this example. Question: Is this optimal?
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Interval colouring

Interval Colouring Problem

Given a set of intervals, colour all intervals so that intervals having
the same colour do not intersect

Goal: minimize the number of colours used.

We could simply apply the m-machine ISP for increasing m until we
found the smallest m that is sufficient. (See the in assignment 1.)

Note: This is a simple example of a polynomial time reduction which
is an essential concept when we study NP-completeness. But this
would not be as efficient as the greedy algorithm to follow.

23 / 44



Greedy interval colouring

Consider the EST (earliest starting time) for interval colouring.
I Sort the intervals by non decreasing starting times
I Assign each interval the smallest numbered colour that is feasible given

the intervals already coloured.

Recall that EST is a terrible algorithm for ISP.

Note: this algorithm is “equivalent” to LFT (latest finishing time
first).

Theorem

EST is optimal for interval colouring
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Greedy Interval Colouring

Sort intervals so that s1 ≤ s2 ≤ . . . ≤ sn
FOR i = 1 to n

Let k := min{` : ` 6= χ(j) for all j < i such that the
j th interval intersects the i th interval}

σ(i) := k
% The i th interval is greedily coloured by the smallest non conflicting

colour.
ENDFOR
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Proof of Optimality (sketch)

The proof technique we will use here is also often used for proving
approximations.

The idea is to find some bound (or bounds) that any solution must
satisfy and then relate that to the algorithm’s solution.

In this case, consider the maximum number of intervals in the input
set that intersect at any given point.

Observation

The number of colours must be at least this large.

It remains to show that the greedy algorithm will never use more than
this number of colours.
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An example
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The maximum of number of intersecting intervals is 4.

So we can’t use less than 4 colors in this example.
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Why doesn’t the Greedy Colouring Algorithm
exceed this intrinsic bound?

Recall that we have sorted the intervals by nondecreasing starting
time (i.e. earliest start time first).

Let k = maximum number of intervals in the input set that intersect
at any given point.

Suppose for a contradiction that

the algorithm used more than k colours.

Consider the first time (say on some interval `) that the greedy
algorithm would have used k + 1 of colours.

I Then it must be that there are k intervals intersecting `.
I Let s be the starting time of `.
I These intersecting intervals must all include s. Why?
I Hence, there are k + 1 intervals intersecting at s!
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Greedy algorithms for the MST problem

We assume that everyone is familiar with the concept of a graph
G = (V ,E ) and an edge weighted graph where there is a real valued
weight function w : E → R.

We will start with the assumption that the input graph G is connected in
which case all the nodes can be connected by a tree. Such a tree is called
a spanning tree.

Our goal is to constuct a minimum spanning tree (MST); that is, we wish
to find a subset of edges E ′ ⊆ E such that T = (V ,E ′) is a spanning tree
minimizing

∑
e∈E ′ we . 23.1 Growing a minimum spanning tree 625
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Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge .b; c/ and replacing it with the edge .a; h/
yields another spanning tree with weight 37.

to problems. For the minimum-spanning-tree problem, however, we can prove that
certain greedy strategies do yield a spanning tree with minimum weight. Although
you can read this chapter independently of Chapter 16, the greedy methods pre-
sented here are a classic application of the theoretical notions introduced there.

Section 23.1 introduces a “generic” minimum-spanning-tree method that grows
a spanning tree by adding one edge at a time. Section 23.2 gives two algorithms
that implement the generic method. The first algorithm, due to Kruskal, is similar
to the connected-components algorithm from Section 21.1. The second, due to
Prim, resembles Dijkstra’s shortest-paths algorithm (Section 24.3).

Because a tree is a type of graph, in order to be precise we must define a tree in
terms of not just its edges, but its vertices as well. Although this chapter focuses
on trees in terms of their edges, we shall operate with the understanding that the
vertices of a tree T are those that some edge of T is incident on.

23.1 Growing a minimum spanning tree

Assume that we have a connected, undirected graph G D .V; E/ with a weight
function w W E ! R, and we wish to find a minimum spanning tree for G. The
two algorithms we consider in this chapter use a greedy approach to the problem,
although they differ in how they apply this approach.

This greedy strategy is captured by the following generic method, which grows
the minimum spanning tree one edge at a time. The generic method manages a set
of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.
At each step, we determine an edge .u; !/ that we can add to A without violating
this invariant, in the sense that A[f.u; !/g is also a subset of a minimum spanning

Figure: Figure 23.1 in CLRS; bold edges in a (non-unique) MST
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Kruskal’s and Prim’s greedy MST algorithms

We recall the graph definitions of a tree (i.e., an acyclic connected
graph) and a forest (i.e., a disjoint collectionn of trees). Kruskals
algorithm proceeds by iteratively, merging subtrees (in a forest) of the
input graph. Prim’s algorithm proceeds by iteratively extending a
subtree of the graph.

There is a basic fact that underlies Kruskal’s and Prim’s MST
algorithms and their proofs; namely, if we add an edge to a tree, then
it forms a unique cycle. Cycles can be detected by maintain sets
corresponding to components of the graph.

So in both Kruskal’s and Prim’s algorithm, it seems reasonable to
always iteratively choose the smallest weight edge that does not form
a cycle.
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Implementing Kruskal’s greedy MST algorithm144 Algorithms

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) ̸= find(v):
add edge {u, v} to X
union(u, v)

And whenever we add an edge, we are merging two components.

union(x, y): merge the sets containing x and y.

The final algorithm is shown in Figure 5.4. It uses |V | makeset, 2|E| find, and |V | − 1
union operations.

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

Figure: Kruskals algorithm from DPV
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Proving the optimality of Kruskals MST algorithm

We can use the same inductive “promising solution” argument that was
used for the interval selection problem:

Let Xi be the partial solution (i.e. forest) after the i th iteration. By
induction we can prove that Xi is promising for all i which implies that Xn

must be optimal. In the algorithm let ei = (u, v) be the i th smallest
weight edge.

Case 1: Adding ei = (u, v) forms a cycle so that Xi+1 = Xi

Case 2A: Xi ∪ {(u, v)} is still acyclic and ei+1 ∈ OPTi so that
OPTi+1 = OPT )i
Case 2B: Xi ∪ {(u, v)} is still acyclic and ei+1 /∈ OPTi ; this is again the
interesting case. What has to be done?

As in the interval selection “promising proof”, we can now create a new
OPTi+1 by considering the cycle C created by adding ei+1 to OPTi .
There must be another edge e ∈ C such that w(e) ≥ w(ei ) so that we
can replace e by ei .
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Lossless compression: Huffman (prefix-free)
encoding

We want to encode a set of n symbols. This would take k = log n bits per
symbol if we give each symbol a unique binary string of k bits. But in say
a document, some symbols may only occur rarely while other occur
frequently. If we want to compress the document, it would make sense (if
possible) to encode frequently occuring symbols with short strings at the
expense longer strings for less frequently occuring symbols.

One way to do this is by using a prefix-free encoding where no string (in
the encoiding) is the prefix of another string. This will guarantee that the
document can be recovered from the encoding symbol by symbol. Is this
clear?
We can represent a prefix-free code by a binary tree where the edges are
{0, 1} labelled and the leaves represent the symbols. The depth of a path
then becomes the length of the encoding for the symbol at that leaf.
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Prefix-free coding continued154 Algorithms

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets.

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

for our toy example, where (under the codes of Figure 5.10) the total size of the binary string
drops to 213 megabits, a 17% improvement.

In general, how do we find the optimal coding tree, given the frequencies f1, f2, . . . , fn of
n symbols? To make the problem precise, we want a tree whose leaves each correspond to a
symbol and which minimizes the overall length of the encoding,

cost of tree =
n∑

i=1

fi · (depth of ith symbol in tree)

(the number of bits required for a symbol is exactly its depth in the tree).
There is another way to write this cost function that is very helpful. Although we are only

given frequencies for the leaves, we can define the frequency of any internal node to be the
sum of the frequencies of its descendant leaves; this is, after all, the number of times the
internal node is visited during encoding or decoding. During the encoding process, each time
we move down the tree, one bit gets output for every nonroot node through which we pass. So
the total cost—the total number of bits which are output—can also be expressed thus:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.
The first formulation of the cost function tells us that the two symbols with the smallest

frequencies must be at the bottom of the optimal tree, as children of the lowest internal node
(this internal node has two children since the tree is full). Otherwise, swapping these two
symbols with whatever is lowest in the tree would improve the encoding.
This suggests that we start constructing the tree greedily: find the two symbols with the

smallest frequencies, say i and j, and make them children of a new node, which then has
frequency fi + fj. To keep the notation simple, let’s just assume these are f1 and f2. By the
second formulation of the cost function, any tree in which f1 and f2 are sibling-leaves has cost
f1 + f2 plus the cost for a tree with n − 1 leaves of frequencies (f1 + f2), f3, f4, . . . , fn:

For a given document D, we would know the frequency of each symbol;
otherwise we might know the probability of each symbol.
Let the symbols be a1, . . . , an and let fi = ni

|D| be the probability of each

symbol when ni is the number of occurrences and |D| is the length of the
document.

Sort the symbols so that f1 ≤ f2 . . . ≤ fn. Let `i be the length of the i th

least frequent symbol in the encoding.

It follows that
∑

i fi`i is the expected length of a symbol and
∑

i ni`i is
the total length of the encoded document. In either case, we wish the
construct a prefix-tree so as to minimize these sums.
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Huffman algorithm from DPV text
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 155

f1 f2

f3f5 f4

f1 + f2

The latter problem is just a smaller version of the one we started with. So we pull f1 and f2

off the list of frequencies, insert (f1 + f2), and loop. The resulting algorithm can be described
in terms of priority queue operations (as defined on page 120) and takes O(n log n) time if a
binary heap (Section 4.5.2) is used.

procedure Huffman(f)
Input: An array f [1 · · · n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i = 1 to n: insert(H, i)
for k = n + 1 to 2n − 1:

i = deletemin(H), j = deletemin(H)
create a node numbered k with children i, j
f [k] = f [i] + f [j]
insert(H,k)

Returning to our toy example: can you tell if the tree of Figure 5.10 is optimal?
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Interval graphs: The interval selection and coloring
problems as graph problems

There is a natural way to view the interval scheduling and colouring
problems as graph problems.

Let I be a set of intervals. We can construct the intersection graph
G (I) = (V ,E ) where

I V = I
I (u, v) is an edge in E iff the intervals corresponding to u and v

intersect.

Any graph that is the intersection graph of a set of intervals is called
an interval graph.

The interval selection (resp. interval coloring) problem can be viewed
as the maximum independent set problem (MIS) for the class of
interval graphs.

Intersection graphs are studied for many other geometric objects and
other types of objects.
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Graph MIS and Colouring

Let G = (V ,E ) be a graph.

The following two problems are known to be “NP- hard to
approximate” for arbitrary graphs:

Graph MIS

A subset U of V is an independent set (aka stable set) in G if for all
u, v ∈ U, (u, v) is not an edge in E .

The maximum independent set (MIS) problem is to find a maximum
size independent set U.

Graph colouring

A function c mapping vertices to {1, 2, . . . , k} is a valid colouring of
G if c(u) is not equal to c(v) for all (u, v) ∈ E .

The graph colouring problem is to find a valid colouring so as to
minimize the number of colours k .
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Efficient algorithms for interval graphs

Given a set I of intervals, it is easy to construct its intersection graph
G (I).

Note: The following is a known interesting theorem

Given any graph G , there is a linear-time algorithm to decide if G is an
interval graph and if so to construct an interval representation.

The MIS (resp. colouring) problem for interval graphs is the MIS
(resp. colouring) problem for its intersection graph and hence these
problems are efficiently solved for interval graphs.

I Question: Is there a graph theoretic explanation?
I YES: interval graphs are chordal graphs having a perfect elimination

ordering.

The minimum colouring number (chromatic number) of a graph is
always at least the size of a maximum clique.

I The greedy interval colouring proof shows that for interval graphs

the chromatic number = max clique size.
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Summarizing the greedy paradigm

Informally, (most) greedy algorithms consider one input item at a
time and make an irrevocable (“greedy”) decision about that item
before seeing more items.

To make this precise for any given problem we have to say
1 how input items are represented ; for example, what other information

could we put into the representation of an interval?
2 how an algorithm determines the order in which input items are

considered.

Key to formalizing our intuitive idea off greedy algorithm: we need to
define the class of orderings of the input items that will be allowed.
We cannot allow any ordering of the input set or else one can say
take exponential time to compute an “optimal ordering”.

If we try to make this precise by stating that the ordering must be
done in say time O(n log n) (or even poly(n)) then we are in the
situation of trying to prove that something cannot be done in a given
time bound. The Turing tarpit 39 / 44



One way to formalize how to order

For a given problem, assume that input items belong to some set J .

For any execution of the algorithm, the input is a finite subset I ⊂ J .

Let f : J → < be any function; that is, we do not place any
restriction on the complexity or even the computability of the
function.

Then for any actual input set I = {I1, . . . , In}, the function f induces
a total order on the input set (where we can break ties using the
index of the input items as given).

In a fixed order the function f is set initially. In an adaptive order,
there can be a different function fi in each iteration i with fi
depending on the items considered in iterations j < i .
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Jeff Erickson’s comment on greedy algorithms

Algorithms Lecture 5: Dynamic Programming [Fa’10]

first, then the subproblems that depends only on base cases, and so on. More formally, the
dependencies you identified in the previous step define a partial order over the subproblems;
in this step, you need to find a linear extension of that partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and you
know how to solve each subproblem. So do that! If your data structure is an array, this
usually means writing a few nested for-loops around your original recurrence. You don’t
need to do this on homework or exams.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if you try
to build up answers in the wrong order, your algorithm won’t work!

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
Well. . . hardly ever.6

A different lecture note describes the effort required to prove that greedy algorithms are correct, in
the rare instances when they are. You will not receive any credit for any greedy algorithm for any
problem in this class without a formal proof of correctness. We’ll push through the formal proofs
for several greedy algorithms later in the semester.

5.5 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the minimum
number of letter insertions, letter deletions, and letter substitutions required to transform one word into
another. For example, the edit distance between FOOD and MONEY is at most four:

6Greedy methods hardly ever work! So give three cheers, and one cheer more, for the hardy Captain of the Pinafore! Then
give three cheers, and one cheer more, for the Captain of the Pinafore!

7
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End of Week 2

We ended the Wednesday night class with this rather pessimistic comment
by Jeff Erickson. Next week we will pick up where we left off after first
possibly going over some material from this week and last week.
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DP and Linear programming: two sledgehammers of
the algorithmic craft

The following is the first paragraph of chapter 6 of DPV.

Chapter 6

Dynamic programming

In the preceding chapters we have seen some elegant design principles—such as divide-and-
conquer, graph exploration, and greedy choice—that yield definitive algorithms for a variety
of important computational tasks. The drawback of these tools is that they can only be used
on very specific types of problems. We now turn to the two sledgehammers of the algorithms
craft, dynamic programming and linear programming, techniques of very broad applicability
that can be invoked when more specialized methods fail. Predictably, this generality often
comes with a cost in efficiency.

6.1 Shortest paths in dags, revisited

At the conclusion of our study of shortest paths (Chapter 4), we observed that the problem is
especially easy in directed acyclic graphs (dags). Let’s recapitulate this case, because it lies at
the heart of dynamic programming.
The special distinguishing feature of a dag is that its nodes can be linearized; that is, they

can be arranged on a line so that all edges go from left to right (Figure 6.1). To see why
this helps with shortest paths, suppose we want to figure out distances from node S to the
other nodes. For concreteness, let’s focus on node D. The only way to get to it is through its

Figure 6.1 A dag and its linearization (topological ordering).
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My view of greedy algorithms

First, the previous comments are in the context of emphasizing DP
and LP algorithms for optimizatio problems and were a deliberate
overstating of the point.
My view of greedy algorithms is that while they may not often be
optimal or as good as more sophisticated algorithms, there are many
cases where they work well either in terms of provable approximations
or “in practice”.
Moreover, in some cases we imediately need something that works
and knowing some basic approaches to a problem becomes a starting
point. If nothing esle, greedy algorithms can be a benchmark for
comparison against more sophisticated algorithms.
DP algorithms, once they are formulated, often seem quite apparant.
But coming up with a correct DP formulation is often not so obvious.
In contrast, coming up with a correct (albeit possibly one having poor
performance) greedy algorithm is usually easy to do.
Finally, there are applications (e.g. auctions) where conceptual
simplicity is a virtue in itself.
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