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Announcements: The revised grading scheme

Combining both the day time and evening sections there were 168
students who voted.

108 voted yes (approving the proposed revised grading scheme);
This is ≈ 64%yes

60 voted no; This is ≈ 34%no

The revised grading scheme has been approved and we will be posting
a fourth asasignment A4.
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Week 11 : Other Announcements

We will continue to provide information during this period on the web
page, on piazza and on these lecture slides. We will also hold office
hours via skype. My skype address is abborodin@gmail.com.
I am also holding office hours via zoom on Wednesdays at 3PM. This
is a slot reserved for CSC303 lectures and tutorials so you need the
303 zoom site password. It is 038954

Assignment 3 is due Thursday, April 2 at 4:59.

Assignment 4 is due Thursday, April 16 at 4:59

In many cases, students are answering questions correctly on piazza
and we appreciate that being done.

While we are always concerned about plagarism, we are particularly
concerned due to the additional pressure we are all feeling.
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This weeks agenda

1 We begin this week (i.e., first hour) discussing local search and
approximation algorithms. This is a big topic but we will only quickly
mention some basic ideas and a couple of applications. In partcular,
we will discuss the Exact Max-2-Sat and Max-Sat problems where will
introduce the concept of “non-oblivious” local search.

2 After discussing local search, this week will be devoted to the final
main topic of the course, which is randomized algorithms. In
particular,

I The why of randomized algorithms
I Polynomial identity testing; the symbolic determinant problem.
I 0-sided vs 1-sided vs 2-sided error; amplifying probability of correctness
I Naive randomized algorithm for Exact Max-2-Sat and ts

de-randomization.
I A more recent max-sat algorithm
I The complexity of k-SAT and random walk algorithms for k-SAT.
I Randomized rounding of LPs.

4 / 54



This weeks agenda continued and next week’s
agenda

Our agenda for this week is overly ambitious and almost surely will spill
over to next week.

There are a couple of underlying themes in what we have discussed before
and will continue to try to mention. Namely,

Algorithms and their limitations suggest both extensions to other
problems and new algorithms to overcome some limitations.

There is often a divide between theorectical worst case analysis and
observed performance “in practice”. In particular, “simple
algorithms” often have relatively good performance, say not matching
“state of the art” on applications but sometimes quite competitive in
performance while being more efficient and easier to implement.

After finishing up material from this week, next week will be an overview
of a number of important topics in algorithm design and analysis that we
will not discuss in this course. Algorithm design and analysis continues to
be a very active field within computer science.
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Local Search: another conceptually simple approach

We now begin a discussion of local search which for me, along with greedy
algorithms, is one of the two conceptually simplest search/optimization
paradigms. (We briefly mentioned local search when discussing flows.)

The vanilla local search paradigm

“Initialize” S
While there is a “better” solution S ′ in the “local neighbourhood”
Nbhd(S)
S := S ′

End While

If and when the algorithm terminates, the algorithm has computed a local
optimum. To make this a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?
2 What constitutes a reasonable definition of a local neighbourhood?
3 What do we mean by “better”?

Answering these questions (especially as to defining a local
neighbourhood) will often be quite problem specific.
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Towards a precise definition for local search

We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.
Of course, in practice we can use any efficiently computed solution.

We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S ′|dH(S ,S ′) ≤ k} for some “small” k where dH(S ,S ′) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|k .

3 As we previously discussed, we can view Ford Fulkerson flow algorithms
as local search algorithms where the (possibly exponential size but
efficiently search-able) neighbourhood of a flow solution S are flows
obtained by adding an augmenting path flow.

7 / 54



What does “better” solution mean? Oblivious and
non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search. I think it
should be called greedy local search.

For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

For efficiency we sometimes insist that there is a “sufficiently better”
improvement rather than just better.
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The weighted max cut problem

Our first local search algorithm will be for the (weighted) max cut
problem defined as follows:

The (weighted) max-cut problem

I Given a (undirected) graph G = (V ,E ) and in the weighted case the edges
have non negative weights.

I Goal: Find a partition (A,B) of V so as to maximize the size (or weight) of
the cut E ′ = {(u, v)|u ∈ A, v ∈ B, (u, v) ∈ E}.

We can think of the partition as a characteristic vector χ in {0, 1}n
where n = |V |. Namely, say χi = 1 iff vi ∈ A.

Let Nd(A,B) = {(A′,B ′) | the characteristic vector of (A′) is
Hamming distance at most d from (A)}

So what is a natural local search algorithm for (weighted) max cut?
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A natural oblivious local search for weighted max cut

Single move local search for weighted max cut

Initialize (A,B) arbitrarily
WHILE there is a better partition (A′,B ′) ∈ N1(A,B)

(A,B) := (A′,B ′)
END WHILE

This single move local search algorithm is a 1
2 approximation; that is,

when the algorithm terminates, the value of the computed local
optimum will be at least half of the (global) optimum value.
In fact, if W is the sum of all edge weights, then w(A,B) ≥ 1

2W .
This kind of ratio is sometimes called the absolute ratio or totality
ratio and the approximation ratio must be at least this good.
The worst case (over all instances and all local optima) of a local
optimum to a global optimum is called the locality gap.
It may be possible to obtain a better approximation ratio than the
locality gap (e.g. by a judicious choice of the initial solution) but the
approximation ratio is at least as good as the locality gap.
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Proof of totality gap for the max cut single move
local search

The proof is based on the following property of any local optimum:∑
v∈A

w(u, v) ≤
∑
v∈B

w(u, v) for every u ∈ A

Summing over all u ∈ A, we have:

2
∑
u,v∈A

w(u, v) ≤
∑

u∈A,v∈B
w(u, v) = w(A,B)

Repeating the argument for B we have:

2
∑

u,v∈B
w(u, v) ≤

∑
u∈A,v∈B

w(u, v) = w(A,B)

Adding these two inequalities and dividing by 2, we get:∑
u,v∈A

w(u, v) +
∑

u,v∈B
w(u, v) ≤ w(A,B)

Adding w(A,B) to both sides we get the desired W ≤ 2w(A,B).
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The complexity of the single move local search

Claim: The local search algorithm terminates on every input instance.
I Why?

Although it terminates, the algorithm could run for exponentially
many steps. We saw a similar phenomena concerning some Ford
Fulkerson implementations.

It seems to be an open problem if one can find a local optimum
in polynomial time.

However, we can achieve a ratio as close to the stated 1
2 totality ratio

by only continuing when we find a solution (A′,B ′) in the local
neighborhood which is “sufficiently better”. Namely, we want

w(A′,B ′) ≥ (1 + ε)w(A,B) for any ε > 0

This results in a totality ratio 1
2(1+ε) with the number of iterations

bounded by n
ε logW .
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Final comment on this local search algorithm

It is not hard to find an instance where the single move local
search approximation ratio is 1

2 .

Furthermore, for any constant d , using the local Hamming
neighbourhood Nd(A,B)
still results in an approximation ratio that is essentially 1

2 .
And this remains the case even for d = o(n).

It is an open problem as to what is the best “combinatorial algorithm”
that one can achieve for max cut.

There is a vector program relaxation of a quadratic program that
leads to a .878 approximation ratio.
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Exact Max-k-Sat

Given: An exact k-CNF formula

F = C1 ∧ C2 ∧ . . . ∧ Cm,

where Ci = (`1
i ∨ `2

i . . . ∨ `ki ) and `ji ∈ {xk , x̄k | 1 ≤ k ≤ n} .
In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment τ so as to maximize

W (τ) = w(F | τ),

the weighted sum of satisfied clauses w.r.t the truth assignment τ .

It is NP hard to achieve an approximation better than 7
8 for (exact)

Max-3-Sat and hence for the non exact versions of Max-k-Sat for
k ≥ 3.
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The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:
Nd(τ) = {τ ′ : τ and τ ′ differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment τ
WHILE there exists τ̂ ∈ Nd(τ) such that W (τ̂)>W (τ)

τ := τ̂
END WHILE
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How good is this algorithm?

Note: For Max-Sat, I am using approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is 2

3 .

In fact, for every exact 2-Sat formula, the algorithm finds an
assignment τ such that W (τ) ≥ 2

3

∑m
i=1 wi , the weight of all clauses,

and we say that the “totality ratio” is at least 2
3 .

More generally for Exact Max-k-Sat the ratio is k
k+1 . This ratio is

essentially a tight ratio for any d = o(n).

This is in contrast to a naive greedy algorithm (which we will soon
see) derived from a randomized algorithm that achieves totality ratio
(2k − 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with (for example) a
greedy algorithm and then apply local search.
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Analysis of the oblivious local search for Exact
Max-2-Sat

Let τ be a local optimum and let
I S0 be those clauses that are not satisfied by τ
I S1 be those clauses that are satisfied by exactly one literal by τ
I S2 be those clauses that are satisfied by two literals by τ

Let W (Si ) be the corresponding weight.

We will say that a clause involves a variable xj if either
xjor x̄j occurs in the clause. Then for each j , let

I Aj be those clauses C in S0 involving the variable xj .
I Bj be those clauses C in S1 involving the variable xj

such that it is the literal xj or x̄j that is satisfied in C
by τ .

I Cj be those clauses C in S2 involving the variable xj .

Let W (Aj),W (Bj),W (Cj) be the corresponding weights.
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Analysis of the oblivious local search (continued)

Summing over all variables xj , we get
I 2W (S0) =

∑
j W (Aj) noting that each clause in S0 gets counted twice.

I W (S1) =
∑

j W (Bj)

Given that τ is a local optimum, for every j , we have

W (Aj) ≤W (Bj)

or else flipping the truth value of xj would
improve the weight of the clauses being satisfied.

Hence (by summing over all j),

2W (S0) ≤W (S1).
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Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S0)

W (S0) + W (S1) + W (S2)
≤ W (S0)

3W (S0) + W (S2)
≤ W (S0)

3W (S0)

It is not easy to verify but there are examples showing that this 2
3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4
5 whenever d < n/2.

In the weighted case, as in the max-cut problem, we have to worry
about the number of iterations. And here again we can speed up the
termination by insisting that any improvement has to be sufficiently
better.
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Using the proof to improve the algorithm

We can learn something from this proof to improve the performance.

Note that we are not using anything about W (S2).

If we could guarantee that W (S0) was at most W (S2) then the ratio
of clause weights not satisfied to all clause weights would be 1

4 .

Claim: We can do this by enlarging the neighbourhood to include
τ ′ = the complement of τ .
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The non-oblivious local search

A thought experiment: Given two solutions (ie., truth assignments)
that yield the same objective value, why might we prefer one to the
other?

We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.
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Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:

−1

2
P2,j −

3

2
P1,j +

1

2
N1,j +

3

2
N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain

3W (S0) ≤W (S1) + W (S2)
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The divide between theory and practice

In the first week of this course, I indicated that our focus will be on worst
case analysis. The algorithmic paradigms we consider are a starting point
for “algorithms in practice”.

For certain problems, there are popular benchmarks (and annual or
frequent competitions). One such problem is Max-Sat. The winners of
these compeitions are usually algorithms that are developed p from some
basic paradigms and then become highly tuned using various heuristics.

For Max-Sat, the state of the art are various implementatiions of
simulated annealing (SA) and WalkSat. SA (and Tabu Search TS) are
local search algorithms that use principled ideas for escaping local optima.
WalkSat is based on random walks.

In addition to the oblivious (OLS) and non-oblivious (NOLS) local search
algorithms, there is a 2 pass algorithm algorithm that is the
“de-randomization” of a randomized one pass “online” algorithm.
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How competitive are simple algorithms against the
state of the art?

The following experiments show the applicability of the non-oblivious idea
and furthermore how relatively simple combinatorial algorithms can be
competitive with state of the art (more time consumming) algorithms.

In applications (and life) there are usual tradeoffs that need to be made
(e.g., performance vs complexity).
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Some comparative experimental results for local
search based Max-Sat algorithms
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Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local

[From Pankratov and Borodin 2010]
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More experiments for benchmark Max-Sat

OLS NOLS TS NOLS+TS SA MWS

OLS 0 457 741 744 730 567

NOLS 160 0 720 750 705 504

TS 0 21 0 246 316 205

NOLS+TS 8 0 152 0 259 179

SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0
Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

6 Future work

We conclude with several open questions suggested by this work. A tight bound
on the approximation or totality ratio of tabu search still requires closure. For
all local search methods, rather than worst case approximation (totality) ratios,
it would be more insightful to be able to computer expected ratios where the
expectation is taken over random initial assignments. A more challenging di-
rection is to provide theoretical results corresponding to the experiments from
the second part of the paper. For example, what is the expected approximation
ratio achieved by any of the deterministic local search based methods under a
uniform random model of k SAT formulas with clause densities near the hypoth-
esized threshold? In particular, for densities above the known algorithmic lower
bound [12] can anything be said about the expected MAXSAT approximation?
If the length of the taboo list is infinite, tabu search enters a cycle. What is the
expected number of steps that tabu search makes before entering a cycle and
what is the expected length of a cycle? Is there a theoretical explanation for
why non-oblivious local search seems to provide such a subtantial improvement
when used to initialize tabu search but does not seem to help (for example)
MaxWalkSat.
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More experiments for benchmark Max-Sat

Table 2. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA WalkSat
% sat ? time % sat ? time % sat ? time % sat ? time

sc-app 90.53 93.59s 99.54 45.14s 99.77 104.88s 96.50 2.16s
ms-app 83.60 120.14s 98.24 82.68s 99.39 120.36s 89.90 0.48s

sc-crafted 92.56 61.07s 99.07 22.65s 99.72 70.07s 98.37 0.66s
ms-crafted 84.18 0.65s 83.47 0.01s 85.12 0.47s 82.56 0.06s
sc-random 97.68 41.51s 99.25 40.68s 99.81 52.14s 98.77 0.94s
ms-random 88.24 0.49s 88.18 0.00s 88.96 0.02s 87.35 0.06s

4 A Hybrid Algorithm that Achieves Excellent
Performance at Low Cost

Among the algorithms considered so far, Spears’ simulated annealing produced
the best solutions. But given that the greedy algorithms were not far o� in terms
of satisfied clauses and only needed a fraction of the running time, the question
is if it is possible to improve their solutions while preserving their speed.

Therefore, we combine the deterministic 2-pass algorithm with ten rounds of
simulated annealing (ShortSA); in particular, we utilize the last ten rounds of
Spears’ algorithm, during which the temperature is low and hence the random
walk is very goal-oriented. Here it is advantageous that below the hood both
algorithms are very similar, in particular they consider the variables one-by-one
and iterate for each variable over its set of clauses. Thus, the implementation
of our hybrid variant requires very little additional e�ort. To the best of our
knowledge, the combination of a greedy algorithm with only a few steps of
simulated annealing is novel; in particular, the rationale and characteristics di�er
from using a greedy algorithm to produce a starting solution for local search, as
it is common for example for TSP [14]. Moreover, our experiments demonstrate
that using the 2-pass algorithm to provide an initial solution in standard local
search for MAX SAT does not achieve both goals simultaneously (cp. Sect. 3.2).

The empirical running time of our linear-time algorithm scales even better
than expected, averaging at 4.7s for sc-app and 3.9s for ms-app. Therefore its
speed is comparable to the greedy algorithms and much faster than NOLS or SA;
the latter took 104.88s and 120.38s respectively on average for these sets.

In terms of satisfied clauses our hybrid algorithm achieves the excellent
performance of SA: for the sc-app category 2Pass+ShortSA satisfies 97.75% of
the clauses, and hence the di�erence to SA is only marginal (0.02%). Also for the
other categories the additional local search stage essentially closes the gap, the
maximum di�erence being 0.4% for ms-crafted. Like SA, it dominates strictly
the other algorithms on the overwhelming majority of the instances.

In order to study the e�ect of the initial assignment provided by 2Pass, we
contrasted the performance of our hybrid algorithm by starting ShortSA from
the all-zero assignment. It turns out that the 2Pass assignment bridges about
half of the gap between ShortSA and SA, which reveals ShortSA to be another
practical algorithm with excellent performance; typically, it is slightly worse

10

Figure: Table from Poloczek and Williamson 2017
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Oblivious and non-oblivious local search for k + 1
claw free graphs

We again consider the maximum weighted independent set problem in
a k + 1 claw free graph.

The standard greedy algorithm and the 1-swap oblivious local search
both achieve a 1

k approximation for the WMIS in k + 1 claw free
graphs. Here we define an “`-swap” oblivious local search by using
the neighbourhood defined by bringing in a set S of up to ` vertices
and removing all vertices adjacent to S .

For the unweighted MIS, Halldórsson shows that a 2-swap oblivious
local search will yield a 2

k+1 approximation.
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Berman’s [2000] non-oblivious local search

For the weighted MIS, the “`-swap” oblivious local search results
(essentially) in a 1

k locality gap for any constant `.

Chandra and Halldóssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search, the approximation ratio improves to 3

2k .

Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves a
locality gap of 2

k+1 for WMIS on k + 1 claw-free graphs.
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Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves a
locality gap of 2

k+1 for WMIS on k + 1 claw-free graphs.
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Some concluding comments on local search

For the metric k-median problem, until recently, the best
approximation was by a local search algorithm. Using a p-flip (of
facilities) neighbourhood, Arya et al (2001) obtain a 3 + 2/p
approximation which yields a 3 + ε approximation running in time
O(n2/ε).

Li and Svensson (2013) obtained a (1 +
√

3 + ε) ≈ 2.732 + ε
LP-based approximation running in time O(n1/ε2

). Surprisingly, they
show that an α approximate “pseudo solution” using k + c facilities
can be converted to an α + ε approximate solution running in nO(c/ε)

times the complexity of the pseudo solution. The latest improvement
is a 2.633 + ε approximation by Ahmadian et al (2017).

An interesting (but probably difficult) open problem is to use non
oblivious local search for the metric k-median, facility location, or
k-means problems. These well motivated clustering problems play an
important role in operations research, CS algorithm design and
machine learning.
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End of concluding remarks on local search

Perhaps the main thing to mention now is that local search is the
basis for many practical algorithms, especially when the idea is
extended by allowing some well motivated ways to escape local
optima (e.g. simulated annealing, tabu search) and combined with
other paradigms.

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
theoretically analyzed. It is not surprising then that there hasn’t been
much interest in formalizing the method and establishing limits.

Linear Programming (LP) is often solved by some variant of the
simplex method, which can be thought of as a local search algorithm,
moving from one vertex of the LP polytope to an adjacent vertex.
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Randomized algorithms

Randomized Algorithms

ALGORITHM
INPUT

RANDOMNESS

Behavior of the algorithm can vary even for a given fixed input!

Goals:

Correctness – algo often solves the problem correctly (for every input!)

Efficiency – algo often solves the problem quickly, e.g., expected polytime

OUTPUT
DISTRIBUTION

In any randomzed algorithm, the output of the algorithm can vary for a
given input.

Beyond the usual concerns of (say time) efficiency and correctness
(incluing approximation guarantees), we will need to consider randomness
as a resource (i.e. how many random bits are needed) and probability
guarantees on efficiency and correctness.

We will not worry about the source of randomness (although this is an
interesting issue) but assume that we have a supply of random bits (or
random numbers).
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Randomzed algorithms everywhere

Randomized algorithms

Unlike our focus on topics such as greedy algorithms, dynamic
programming, local search, IP/LP rounding, randomization is not a
meta algorithm or algorithmic paradigm.

Rather, randomization an idea that can be applied in any algorithm.

We shall mention its use in a variety of applications.
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A few of the many applications of randomization

In complexity theory, efficiently computable might be better defined
as “computable in randomized polynomial time” rather than
(deterministic) polynomial tme.

Randomized approximation algorithms

Number theory algorithms

cryptography

Deadlock avoidance in networks

Hashing

The probabilistic method for proving existence theorems

Simulations

34 / 54



The Why of randomization continued

There are computational settings (simulation, cryptography, sublinear
time algorithms) where randomization is provably necessary.

Our focus is on how to use randomization to either speed up
computations and/or to improve an approximation and/or as a step
towards a deterministic algorithm

There are also problems where we do not know how to solve a
problem efficiently without randomization.

BUT as far as we know:

A fundamental complexity theory question

It could be that the class of decision/search/optimization problems
solvable in randomized polynomial time is the same as those solvable in
polynomial time.

In fact, this seems to be the current wisdom of some experts since if
not the case then seemingly stranger things would result.

We will recall probabilistic concepts as needed.
35 / 54



Some problems that so far need randomization

There are a number of problems computable in randomized polynomial
time not known to be in polynomial time although it is possible that some
or all of these problems could turn out to be in deterministic polynomial
time.

1 Multivariate polynomial zero testing and the symbolic determinant
problem. As mentioned, some complexity theorists believe this
problem can be solved in determinsitic polynomial time. We will
begin our study of randomized algorithms with the problem of
multivariate polynomial zero testing.

2 Given n, find a prime in [2n, 2n+1]. We know from number theory are
sufficiently many primes in any such range that we can randomly
guess an integer k in the range and then deterministically test if k is
a prine.

3 Estimating the volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x ] for a large prime p.
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Polynomial identity testing

As we may recall from calculus, a non-zero univariate polynomial P(x)
(say over the reals R for definiteness now but in general for any field F ) of
degree d has at most d zeros; that is, P(x) = 0 for at most d values of
x ∈ R . Consider any set S of size |S |. It follows that if we choose r ∈ S ,
uniformly at random, Probr∈uS [P(r) = 0] ≤ d

|S | .
The Schwartz Zipple Lemma extends this fact to multivariate polynomials.

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1, . . . .rm) = 0] ≤ d

|S |

In polynomial identity testing problem, we are implicitly given a
multivariate polynomial and wish to determine if they are identical. One
way we could be implicitly given polynomials is by an arithmetic circuit. A
specific case of interest is the symbolic determinant problem.
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The symbolic determinant problem

Consider an n × n matrix A = (ai ,j) whose entries are polynomials of total
degree (at most) d in m variables, say with integer coeficients. The
determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a polynomial of

degree nd . The symbolic determinant problem is to determine whether
det(A) 6≡ 0, the zero polynomial. Let L = {A|det(A) 6≡ 0}.
By the Schwartz Zipple Lemma, if det(A) is not the zero polynomial, then
Probri∈uS [P(r1, . . . .rm) = 0] ≤ nd

|S | Since the determinant with scalar

entries (in S) can be computed in time proportional to matrix
multiplication, we have a randomized polynomial time algorithm ALG for
the symbolic determinant problem.

More precisely, if we say choose |S | ≥ 2dn, then

If det(A) ≡ 0, then ALG always rejects A (i.e. A /∈ L))
If det(A) is not equivalent to 0, then ALG accepts (i.e. says A ∈ L)
with probability ≥ 1/2.

By repeating this random trial t times, the probability of making an error
(i.e. saying A ∈ L when det(A) ≡ 0) is at most 1

2t .
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Randomization and complexity theory

A 0-sided error or ZPP algorithm (standing for zero-sided
probabilistic polynomial) is always correct and has polynomial
expected running time (expectation over the randomness in the
algorithm). This is what is often called a Las Vegas algorithm but I
do not like this terminology.

One type of Monte Carlo algorithm is a 1-sided error or RP algorithm
that always always runs in polynomial time, is always correct for a NO
instance but has a “small” probability of error for a Yes instance.

The symbolic determinant problem (i.e. {A : det(A) is not the zero
polynomial}) is perhaps the best known problem in RP, not known to
be in P. Note that RP ⊆ NP. Why?

We can think of RP as NP problems which have many random
certificates.
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Randomization and complexity theory continued

In fact, it is sufficient to have the probability of error as large as
(1− 1

nk
) for any k . When the error is (1− 1

t ) by repeating the

algorithm t times, the probability of error becomes (1− 1
t )t ≤ ( 1

e ).

It is not difficult to show that ZPP = RP ∩ co − RP.

The other type of Monte Carlo algorithm is a 2-sided or BPP
algorithm that always runs in polynomial time but has a probability at
most ( 1

2 − 1
nk

) of being incorrect (for either YES or NO instances).

The error probability can be reduced by running many trials and
taking the majority outcome.

It follows that ZPP ⊆ RP ⊆ BPP. However it is not known if
BPP ⊆ NP.

NOTE In spite of the fact that we do not know how to deterministically
solve some problems (such as the symbolic determinant problem) in
polynomial time, some prominent complexity theorists believe (with some
justification) that BPP = P.
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The naive randomized algorithm for exact
Max-k-Sat
We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Warning: For the following discussion of Max-Sat, we will follow the
prevailing convention by stating approximation ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
Since exact Max-k-Sat generalizes the exact k- SAT decision
problem, it is clearly an NP hard problem for k ≥ 3. It is interesting
to note that while 2-SAT is polynomial time computable, Max-2-Sat
is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to be true or false with equal probability.
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Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.
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Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F )|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F )|xi∈u{0,1}] as
E[w(F )|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F )|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?
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(Exact) Max-k-Sat

For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 3

4 (resp. 7
8 ).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved (as we will see) by the

use of semi-definite programming (SDP).

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k literals. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?
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Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

Aside: This reminds me of boosting (Freund and Shapire [1997])
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Johnson’s algorithm is the derandomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true.

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .7968 (resp. .9401) using semi-definite
programming and randomized rounding.
Note: While existing combinatorial algorithms do not come close to
these best known ratios, it is still interesting to understand simple and
even online algorithms for Max-Sat.
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Modifying Johnson’s algorithm for Max-Sat

It is interesting to note that the naive algorithm and Johnson’s
algorithm are online algorithms in the sense that input items (i.e. the
propositional variables) come in some adversarial order x1, x2, . . . xn
and the algorithm makes an irreversible decision (i.e. set to true or
false) for each propositional variable xi without seeing xi+1, . . . , xn.

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm,, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables
(i.e. the input items). This is an example of the random order model
(ROM), a randomized variant of online algorithms.

As an aside, we note that the ROM model was first introduced in
what is known as the secretary problem. If a sequence of candidates
are interviewed (and their value determined) and an irrevocable
decision must be made to hire or not hire without seeing further
candidates. How would you choose a candidate?

47 / 54



Online and ROM Input models for max-sat

To precisely model the Max-Sat problem as an online or ROM algorithm,
we need to specify how each input item is specified. In increasing order of
providing more information (and possibly better approximation ratios), the
following input models can be considered:

Model 0: Each propositional variable x is represented by the names of
the positive and negative clauses in which it appears. This is
sufficient for the naive randomized algorithm.

Model 1: Additiionally, the lengthis of each clause Ci in which x
appears positively, and for each Cj in which it appears negatively.
This is sufficient for Johnsons’s deterministic algorithm.

Model 2: Additionally, for each Ci and Cj , a list of the other variables
in the clause.

Model 3: The variable x is represented by a complete specification of
each clause it which it appears. This is the model that one would like
to fully understand.
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Improving on Johnson’s algorithm

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnson’s algorithm in the ROM model is at
most 2

√
15–7 ≈ .746 < 3/4 , the ratio first obtained by Yannakakis’

IP/LP approximation that we will soon present.

Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm”; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs.
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Another randomized online (weighted) max-sat 3
4

approximation algorithm

The following algorithm is due independently to Buchbinder et al [2012]
and van Zuelen [2011] as described in Poloczek et al [2016]. The idea of
the algorithm is that in setting the variables, we want to balance the
weight of clauses satisfied with that of the weight of clauses not yet
unsatisfied.

Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi ) be the weight of satisfied clauses (resp., unsatsifed clauses) with
respect to Si . Let Bi = 1

2 (SATi + W − UNSATi ) where W is the total
weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi ) be the value of w(Bi )− w(Bi−1) when xi is
set to true (resp. false). Fact: ti + fi ≥ 0.
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The randomized max-sat approximation algorithm
continued

For i = 1 . . . n
If fi ≤ 0, then set xi = true
Else if ti ≤ 0,

then set xi = false
Else set xi true with probability ti

ti+fi
.

End For

Assuming input model 2, Poloczek [2011] shows that no deterministic
online algorithm (even if the algorithm can order the input items as in a
greedy algorithm) can achieve a 3/4 approximation. This provides a sense
in which to claim that these randomized algorithms “cannot be
derandomized” (in contrast to the naive algorithm).
The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm and the best ROM algorithm.
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Revisiting the “cannot be derandomized comment”

However, Buchbinder and Feldman [2016] provide a method that
shows how to derandomize the Buchbinder et al and van Zeulen
algorithm into a polynomial time “parallel” online deterministic
algortihm (i.e., spawning 2n parallel online threads and taking the
best solution amongst these threads).

Poloczek et al [2017] de-randomize the Max-Sat algorithm using a
2-pass online algorithm. Roughly speaking, the first pass assigns
probabilities and the second pass is able to derandomize the algorithm

We will next consider another approach for obtaining the same 3
4

approximation. This is not as efficient as the randomized online
algorithm and it de-randomization as a 2-pass algorithm but it was
the first algorithm to provide a 3

4 approximation and it illustates the
use of randomized rounding.
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Yannakakis’ IP/LP randomized rounding algorithm for
Max-Sat

We will formulate the weighted Max-Sat problem as a {0, 1} IP.

Relaxing the variables to be in [0, 1], we will treat some of these
variables as probabilities and then round these variables to 1 with that
probability.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi ) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1]. Note that here we
cannot simply say zj ≥ 0.
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Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k )k . Then

Prob[Cj is satisifed ] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwj .

Note that bk converges to (and is always greater than) 1− 1
e as k

increases. It follows that the expected value of the rounded solution is
at least (1− 1

e ) LP-OPT ≈ .632 LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.
(The derandomized algorithm will still be solving LPs.)
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