
CSC373: Algorithm Design, Analysis and
Complexity

Winter/Spring 2020

Allan Borodin and Sara Rahmati

Week of March 16-20, 2020

1 / 39



Week 10 : Announcements

As we all know, the University has cancelled classes until the end of
term and the Faculty has cancelled final exams. In consultation with
the Department of Computer Science, we have proposed two possible
revised grading schemes which we will put to the class (in Quercus)
for a majority vote of approval.

We will provide information during this period on the web page, on
piazza and on these lecture slides. We will mainly respond to general
questions as above and not by individual emails. However, we will try
to make ourselves as available as possible by email and even skype for
questions that are more individual specific.

Assignment 3 is now complete and still due Thursday, April 2 at 4:59.
There will be an individual, not team Assignment 4 due April 15.
We will soon post the start of assignment A4.

We will continue to try to answer questions on Piazza as promptly as
we can. In many cases, students are answering question correctly and
we appreciate that being done.
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This weeks agenda

We will be discussing approximation algorithms.

We’ll first consider a couple of online and greedy algorithms.

Then, as already suggested, we consider one general method to
obtain an approximation algorithm (often used for NP hard
problems); namley, we use an LP relaxation of an IP formulation of
an optimization problem. We then need to “round” the optimal LP
solution to an integral solution and analyze the approximation ratio.

We will also look at other algorithmic paradigms (e.g. greedy,
dynamic programming, local search) that are used to derive
approximations to optimality.

We will see that NP hard optimization problems will have different
possible approximation ratios.

In our next topic, randomized algorithms, we will see how
randomization is sometimes used to fascilitate exact and approximate
algorithms.
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The approximation algorithms agenda

Why approximation algorithms?

Strict and asymptotic approximation ratios.

Simple online algorithms for the bin packing and makespan (for
identical machines) problems.

A simple online 2-approximation algorithm for the unweighted vertex
cover problem. A greedy algorithm that does not work for the
unweighted and weighted vertex cover problem.

An IP formulation of the weighted vertex cover problem and its
rounding to produce a 2-approximation. The integrality gap. (This
has already been suggested.)

A greedy approximation for the weighted interval selection problem
when the value of an interval is equal to the interval length. A simple
charging algorithm.
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Approximation algorithms agenda continued

A greedy algorithm for axis-aligned weighted rectangles in 2-space.
Another charging argument.

Abstraction of the previous problem to k + 1 claw free graphs.

A greedy 2-approximation algorithm for the unweighted JISP problem.

Abstraction of JISP to “inductive independence graphs”.

A dynamic programming algorithm for the knapsack problem that
leads to a fully polynomial time approximation algorithm (FPTAS)
algorithm for the knapsack problem. (This has also already been
suggested.

The local search paradigm; oblivious and non-oblivious local search

Local search for approximating max-cut and max-sat.
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The why of approximation algorithms

We have already seen that many optimization problems are NP hard in the
sense that computing an optimal solution for the optimization problem
immediately solves a corresponding NP complete decision problem.

But NP-hardness does not necessarily preclude being able to find solutions
which yield a “good” approximation to the value (for a maximization
problem) or cost (for a minimization problem) of an optimal solution.

Approximation algorithms are also often used for optimization problems for
which we do know optimal algorithms. But why?

Simply stated, the
approximation algorithm may be more efficient and/or easier to implement.
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Approximation ratios for minimization problems

In order to measure how well we are approximating an optimization
problem (with respect to the worst case perspective), we define the
approximation ratio of an algorithm ALG .

For a minimization problem, we say that an algorithm ALG has an
approximation c ≥ (which can be a constant or a function of the input
“size” n) if for all input instances I we have
Cost[ALG (I))] ≤ c · Cost[OPT (I] where OPT is an optimal solution.

This is called a strict approximation ratio (which is what we will mainly
consider today). There is an asymptotic approximation ratio defined as

limCost[OPT (I)]→∞
Cost[ALG(I)]
Cost[OPT (I] .

This is equivalent to
Cost[ALG (I))] ≤ c · Cost[OPT (I)] + o[Cost[OPT (I)]
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Approximation ratios for maximization problems

We have the analogous concept for maximization problems. One possible
way to state a strict approximation ratio for a maximizatio problem is as
follows:
ALG has an approximation c ≥ 1 (which can be a constant or a function
of the input “size” n) if for all input instances I we have
Profit[ALG (I)] ≥ 1

c Profit[OPT (I] where OPT is an optimal solution.

For minimization problems, approximation ratios are always such that
c ≥ 1. For maximization problems, in the above definition, approximation
ratios are a fraction of the optimal profit (i.e., as 1

c where c ≥ 1. However,
if you are reading about approximation ratios for a maximization problem,
you will often also see claims that an algorithm ALG achieves (for
example) has an approximation ratio 4

3 in the sense that an optimalm
solution cannot be better than a fraction 4

3 of what is achieved by ALG .

There is an analogous concept of asymptotic approximation ratios for
maximization problems.
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The approximation landscape

In terms of computing optimal solutions, all “NP complete
optimization problems” (i.e. optimization problems corresponding to
NP complete decision problems) can be viewed (up to polynomial
time) as a single class of problems.

But in the world of approximation algorithms, this single class splits
into different classes of approximation guarantees. Up to our believed
complexity assumptions, we next discuss these possibilities.

Definition

1 An FPTAS (Fully Polynomial Time Approximation Scheme) is a (1 + ε)
approximation algorithm using poly time in the input encoding and 1

ε .

2 A PTAS (Polynomial Time Approximation Scheme) is a (1 + ε)
approximation algorithm using poly time in the input encoding but can have
any complexity in terms of 1

ε .
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Different approximation possibilities for NP
complete optimization

Given widely believed complexity claims

1 An FPTAS
I e.g. the knapsack problem

2 A PTAS but no FPTAS
I e.g. makespan (when the number of machines m is not fixed but rather

is a parameter of the problem.

3 Having a constant c > 1 approximation but no PTAS
I e.g. Vertex cover and JISP to be discussed today

4 An Θ(log n) approximation and no constant approximation
I e.g. set cover Hn ≈ ln n is essentially tight.

5 No n1−ε approximation for any ε > 0
I e.g. graph colouring and MIS for arbitrary graphs

Here n stands for some input size parameter (e.g. size of the universe for set
cover and number of nodes in the graph for colouring and MIS).
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The bin packing problem

Given: B and {a1, a2, . . . , an} where each ai ≤ B, the bin size.
Goal: Pack the items {ai} into the fewest number of bins such that sum
of the elements in a bin does not exceed the bin size B.

I am mentioning the bin packing problem as it is one of the most studied
NP hard approximation problems dating back to a seminal paper by
Johnston et al [1974]. Why NP hard?

THe PARTITION problem is defined as follows: Given
A = {a1, a2, . . . , an}, is there a partition of A into A1 ∪ A2 such that∑

ai∈A1
=
∑

ai∈A2
. It can be shown that SUBSET-SUM ≤p PARTITION

and hence the PARTITION problem is NP complete. Therefore, we cannot
distinguish between needing 2 or 3 bins by choosing B = (

∑
i a1)/2.

Hence the strict approximation ratio is at least 3
2 if we assume P 6= NP.

There are online algorithms that produce constant approximation ratios.
For example, the online algorithm “next-fit” opens a new bin whenever the
last used bin does not have enough room for an arriving item. This is a
2-approximation algorithm.
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Bin packing continued

The online “first fit” and “best fit” algorithms achieve strict
approximation ratio 17

10 . First fit will try placing each item in the first bin
in which it fits before opening a new bin if necessary. Best fit will try to
place each item in the bin (if any) so as to minimize the remaining space
before opening a new bin.

By online algorithm we mean that when each input item arrives, an
irrevocable decision is made without seeing the remaining items. Most
algorithms are not online and they can be called offline algorithms.

There are offline algorithms that for any input instance I pack the items
in OPT (I) + o(OPT (I))bins. Hence the asymptotic approximation ratio
of such an algorithms is 1.
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Online and greedy algorithms

We recall that greedy algorithms consider the input items in some order
determined by the algorithm, and for each input item makes an irrevocable
“greedy” decision.

An online algorithm processes the input items in the order given (i.e. the
algorithm has no control over the order of input arrivals).

In class, a natural question was asked. What is the approximation if we
first sorted the bin packing items and then say using the First Fit
algorithm. It has been shown that when sorting items so that
a1 ≥ a2 . . . ≥ an, the (asymptotic) approximation ratio is 11

9 and after a
sequence results the precise bound for FFD first fit decreasing is
FFD(I) ≤ 11

9 OPT (I) + 6
9 . In contrast, when sorting items so that

a1 ≤ a2 . . . ≤ an, the ratio is no better than 5
3 .
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The makespan problem for identical machines

For our next approximation algorithm we consider the makespan problem
on m identical machines. The goal here is to schedule n jobs (each job Ji
having a processing time or load pi )on m identical machines so as to
minimize the latest completion time.

This is also an NP hard optimization problem even for just m = 2 since an
optimal algorithm for 2 machines would solve the NP cxomplete
PARTITION decision problem.

This problem was first studied by Graham [1966] where he analyzed the
following “natural greedy algorith”. This result precedes the introduction
of NP compleness in 1971, and is considred to be the first analsysi of an
approximaton ratio.
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The makespan problem continued

Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

The approximation ratio for this algorithm is 2− 1
m ; that is, for any

set of jobs J , CGreedy (J ) ≤ (2− 1
m )COPT (J ).

I CA denotes the cost (or makespan) of a schedule A.
I OPT stands for any optimum schedule.

Basic proof idea: OPT ≥ (
∑

j pj)/m; OPT ≥ maxjpj

What is CGreedy in terms of these requirements for any schedule?

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[ j] and OPT≥ 1

m

n�
j=1

T[ j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[ j] ≤ OPT. To finish the proof, we must show that Total[i]− T[ j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[ j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[ j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[ j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[ j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
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Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Jeff Erickson’s lecture notes]
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Comments on Graham’s online greedy algorithm

Graham’s algorithm is considered to be the first paper formally
studying worst case approximation algorithms.

In the online “competitive analysis” literature the ratio CA
COPT

is called
the competitive ratio and it allows for this ratio to just hold in the
limit as COPT increases. This is then just the asymptotic
approximation ratio.

The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio. The nemesis input sequence is
a sequence of m(m − 1) jobs each with processing time pi = 1 and a
final job with processing time pm(m−1)+1 = m. The greedy algorithm
has makespan m + (m − 1) = 2m − 1 while an optimal schedule has
makespan m. Why?

This bad input sequence suggests a better algorithm, namely the LPT
(offline) greedy algorithm.
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The LPT algorithm for the identical machines
makespan problem

Graham’s LPT algorithm

Sort the jobs so that p1 ≥ p2 . . . ≥ pn and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is
(
4
3 −

1
3m

)
.

It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
is a greedy algorithm.

Assuming we maintain a priority queue for the least loaded machine,
I the online greedy algorithm would have time complexity O(n log m)

which is (n log n) since we can assume n ≥ m.
I the LPT algorithm would have time complexity O(n log n).
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The weighted and unweighted vertex cover problem

The vertex cover optimization problem:
Given a graph G = (V ,E )
Goal: To compute a minimum size cover V ′; that is, a subset V ′ ⊆ V
such that for all e = (u, v) ∈ E , either u or v (or both) are in V ′.

In the weighted case, there is a weight function w : V → R≥0 and the goal
is to minimize the weight of a cover.

NOTE: We are maintaining a worst case perspective and one can always
ask about computing an optimal or approximate solution when inputs are
restricted or coming from some distribution.

For this problem (and, in general, for graph problems) there are two
obvious choices for what is an input item; namely,
(1) The edges are the input items and each edge is repreesented by its
endpoints
(2) The vertices are the input items and each vertex is represented by its
vertex or edge adjacency list.
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An online greedy algorithm in the edge input model

We first consider the edge input model

Online greedy algorithm for unweighted vertx cover

V ′ = ∅; E ′ = E % E ′ is the set of currently uncovered edges
M = ∅ % The algorithm is also creating a maximal mathching
While E ′ 6= ∅

Let e = (u, v) be the next uncovered edge
E ′ = E ′ \ { all edges adjacent to u or v}
V ′ = V ′ ∪ {u, v}
M = M ∪ {e}

End While

Claim: |V ′| ≤ 2 · |V ∗| for any vertex cover V ∗.
Proof: The algorithm is creating a maximal matching and a vertex cover
must contain at least one vertex for each edge in a maximal matching.
The algorithm is taking both vertices.
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A greedy approximation algorithm in the vertex
adjacency model

We will next consider the vertex adjacency input model. The “natural”
greedy algorithm in this model chooses its next vertex to process and adds
to the vertex cover by choosing the vertex adjacent to the most uncovered
edges.

Greedy algorithm for unweighted vertex cover

V ′ = ∅; E ′ = E % E ′ is current uncovered edges
While there are any uncovered edges

Let v = (u1, . . . , udv ) be the input vertex such that the number of edges
(v , ui ) ∈ E ′ is maximum

V ′ = V ′ ∪ {v};
Remove all (v , ui ) from E ′

End While

Surprisingly, although it is not obvious, this algorithm does not result in a
constant approximation. Rather the approximation ratio is Hdmax ≈ ln dmax

where dmax is the maximum vertex degree.
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The “natural” extension of the previous greedy
algorithm for the weighted vertex cover problem

Although the previous algiorithm did not result in a constant
approximation, it is still of interest to see if we can extend it to the
weighted case in some natural way.

Greedy algorithm for weighted vertex cover

V ′ = ∅; E ′ = E % E ′ is current uncovered edges
While there are any uncovered edges

Let v = (u1, . . . , udv ) be the input vertex such that
w(v)

current−deg(v) is a minimum

V ′ = V ′ ∪ {v};
Remove all (v , ui ) from E ′

End While

When w(v) = 1 for all v , this becomes the greedy algorithm for the
unweighted cass . Thus the approximation cannot be better than Hdmax .
As previously stated, vertex cover is a special case of set cover and the
analogous greedy algorithm achieves approximation Hm ratio as we will see.21 / 39



LP relaxation and rounding

One standard way to use IP/LP formulations is to start with an IP
representation of the problem and then relax the integer constraints
on the xj variables to be real (but again rational suffice) variables.

We start with the well known simple example for the weighted vertex
cover problem. Let the input be a graph G = (V ,E ) with a weight
function w : V → <≥0. To simplify notation let the vertices be
{1, 2, . . . .n}. Then we want to solve the following “natural IP
representation” of the problem:

I Minimize w · x
I subject to xi + xj ≥ 1 for every edge (vi , vj) ∈ E
I xj ∈ {0, 1} for all j .

The intended meaning is that xj = 1 iff vertex vj is in the chosen
cover. The constraint forces every edge to be covered by at least one
vertex.

Note that we could have equivalently said that the xj just have to be
non negative integers since it is clear that any optimal solution would
not set any variable to have a value greater than 1.
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LP rounding for the natural weighted vertex cover IP

The “natural LP relaxation” then is to replace xj ∈ {0, 1} by
xj ∈ [0, 1] or more simply xj ≥ 0 for all j .

It is clear that by allowing the variables to be arbitrary reals in [0,1],
we are admitting more solutions than an IP optimal with variables in
{0, 1}. Hence the LP optimal has to be at least as good as any IP
solution and usually it is better.

The goal then is to convert an optimal LP solution into an IP solution
in such a way that the IP solution is not much worse than the LP
optimal (and hence not much worse than an IP optimum)

Consider an LP optimum x∗ and create an integral solution x̄ as
follows: x̄j = 1 iff x∗j ≥ 1/2 and 0 otherwise. We need to show two
things:

1 x̄ is a valid solution to the IP (i.e. a valid vertex cover).
2
∑

j wj x̄j ≤ 2 ·
∑

j wjx
∗
j = 2 · LP-OPT ≤ 2 · IP-OPT ; that is, the LP

relaxation results in a 2-approximation.
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The integrality gap

Analogous to the locality gap (that we will discuss for local search),
for LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI

IP−OPT
LP−OPT ; that is, we take the worst

case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation of
the problem just as the locality gap refers to a particular
neighbourhood.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality gap for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n−1

n/2 = 2− 1
n .
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Integrality gaps and approximation ratios

When one proves a positive (i.e upper) bound (say c) on the
integrality gap for a particular IP/LP then usually this is a
constructive result in that some proposed rounding establishes that
the resulting integral solution is within a factor c of the LP optimum
and hence this is a c-approximation algorithm.
When one proves a negative bound (say c ′) on the integrality gap
then this is only a result about the given IP/LP. In practice we tend
to see an integrality gap as strong evidence that this particular
formulation will not result in a better than c ′ approximation. Indeed I
know of no natural example where we have a lower bound on an
integrality gap and yet nevertheless the IP/LP formulation leads
“directly” into a better approximation ratio.
In theory some conditions are needed to have a provable statement.
For the VC example, the rounding was “oblivious” (to the input
graph). In contrast to the Kn input, the LP-OPT and IP-OPT
coincide for an even length cycle. Hence this integrality gap is a tight
bound on the formulation using an oblivious rounding.
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Some charging arguments for approximation
guarantees

In a somewhat different approach to proving approximation bounds, we
want to show how to use a charging argument; that is, in the next couple
of examples, we will charge the weight of any algorithm (and in particular
an optimal algorithm) to items in a greedy solution. The same idea can be
used in local search algorithms.

Note that we considered a charging argument in proving the optimality of
the greedy EFT algorithm for the unweighted interval scheduling problem.

Lets consider a problem for which there is an optimal (DP) algorithm.
Namely, lets consider a restricted version of the weighted interval
scheduling problem (on one machine) where the weight (or valule) of any
I ′ = [s, f ) interval is equal to its its length f − s.

We know there is an optimal dynamic programming algorithm for the
weighted interval scheduling problem so this is just an exercise to show the
charging method.
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A simple greedy algorithm for proportional profit
interval scheduling

Consider the greedy algorithm Greedy that sorts by non-increasing weight
(equal to or at most processing time) and accepts greedily (i.e. if an
interval doesn’t conflict with previously selected intervals, then select it).

Claim: This is a 3-approximation (or 1
3 approximation for those who prefer

fractional approximations for maximization problems). That is the weight
of the greedy solution is at least 1

3 of an optimal solution.
Proof: For every interval I ′ in say an OPT solution, we will charge its
weight to a unique item in the Greedy solution. This charging will be done
so as to guarantee that the charge to intervalis I in the greedy solution will
be at most 3 times the weight of I ′. (Remainder of proof on next slide.)
Note: In graph theoretic terms, we are approximating the maximum
weighted independent set problem in an interval graph.
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Completing the charging argument proof for
proportional weight interval selection

Let I ′ be an interval in OPT. If I ′ is also in Greedy, then we charge I ′ to
iteself. I ′ cannot intersect any other interval in Greedy since OPT has no
conflicts. So now consider an I ′ in OPT that is not in Greedy. We charge
I ′ to the leftmost interval I in Greedy that intersects I ′. There must be at
least one interval intersecting I ′ or Greedy would have taken it. Consider
the intervals I in Greedy to which I ′ = [s, f ) has charged its weight w(I ′).
These intervals intervas I are such that:

I ′ intersects I at s. There can be at most one such I ′ and
w(I ′) ≤ w(I ) or else Greedy would have taken I ′ before seeing I .

I ′ intersects I at f . There can be at most one such I ′ and
w(I ′) ≤ w(I ) or else Greedy would have taken I ′ before seeing I .

I ′ is contained in I . But the total weight of all such intervals is at
most w(I ) since we have weights equal to length f − s.

This guarantees that the total weight of intervals I ′ in OPT is at most
three times the weight of intervals in Greedy.
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Visualizing the charging argument

———————— I in Greedy

———- - - - - - - - ———- Intervals I ′ in OPT

It can be shown that for a reasonably general model of what we mean by a
greedy algorithm, it can be shown that for every ε > 0, for every greedy
algorithm G , there is a set of weighted intervals I such that
OPT (I) ≥ (3− ε) · G (I).
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The weighted independent set problem (WISP) for
the intersection graph of axis parallel translates of a
rectangle

Consider an axis parallel rectangle R in 2-space. An axis parallel translate
of R is a copy of R shifted left, right, down, up. We consider the
intersection graph of n translates of a fixed rectangle R where like interval
graphs, the intersection graph has an edge whenever the rectangles
intersect. Each translate Rj has a weight wj and the goal in to choose a
non intersecting subset S of these n translates so as to maximize the
weight of the rectangles in S .

Claim: Consider any one of the n rectangles, call it R∗ and let R1, . . .Rm

be the translates that intersect R∗. Then there can be at most 4 of these
Ri that do not intersect each other. Why?

As all translates have the same dimension, all the intersecting translates
must intersect at some corner of R∗.
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A greedy algorithm for WISP for the intersection
graph of axis parallel translates of a rectangle

Following the discussion for the weighted interval selection problem with
proportional weights, we again consider a greedy algorithm that sorts by
non-increasing weight; i.e. w1 ≥ w2 . . . ≥ wn and accepts greedily. What is
the approximation ratio of this algorithm and how would you prove it?.

We use a charging argument and the property that for any rectangle R in
the greedy solution, there are at most 4 non-intersecting (i.e.,
independent) rectangles in an OPT solution intersecting R.

There is a nice graph theoretic way to abstract this independence property.
Definition A graph G = (V ,E ) is k + 1 claw free if for every v ∈ V , there
are at most k independent vertices in the neighbourhood
Nbhd(v) = {u ∈ V : (v , u) ∈ E}.

Often, but not always, “intersection graphs” are k + 1 claw free for some
k . In particular, the previous example was a 5 claw free graph (given the
assumption of having one fixed dimension). The interval selection problem
does not result in a k + 1 claw free graph for any fixed k . Why?
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non-increasing weight; i.e. w1 ≥ w2 . . . ≥ wn and accepts greedily. What is
the approximation ratio of this algorithm and how would you prove it?.
We use a charging argument and the property that for any rectangle R in
the greedy solution, there are at most 4 non-intersecting (i.e.,
independent) rectangles in an OPT solution intersecting R.

There is a nice graph theoretic way to abstract this independence property.
Definition A graph G = (V ,E ) is k + 1 claw free if for every v ∈ V , there
are at most k independent vertices in the neighbourhood
Nbhd(v) = {u ∈ V : (v , u) ∈ E}.

Often, but not always, “intersection graphs” are k + 1 claw free for some
k . In particular, the previous example was a 5 claw free graph (given the
assumption of having one fixed dimension). The interval selection problem
does not result in a k + 1 claw free graph for any fixed k . Why?
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The WISP for k + 1 claw free graphs

The suggested greedy algorithm for the intersection graph of axis parallel
translates of a rectangle will always provide a solution that has value at
least 1

4 of an optimal solution.

The charging argument shows us how to charge the weight of rectangles in
an OPT solution to a rectangle R in the greedy solution. By the greedy
ordering any rectangles intersecting R have weight no more than the
weight of R. There can be at most 4 disjoint rectangles intersecting R,
and this completes the charging argument.

The same argument can be used to show that the WISP for k + 1 claw
free graphs can be approximated by a greedy algorithm resulting in a
solution that obtains at least a fraction 1

k of an optimal solution.
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The Job Interval Selection Problem (JISP)

We consider the following extension of interval scheduling. In the JISP
problem, we are given intervals Ij = (s,fj ,Cj) where sj and tj are as before
the start and finish time of the interval. In addition, Cj is the class or job
of which Ij is member. A set of intervals S is a feasible solution if (as
before) the intervals in S do not intersect and for each class C there is at
most one interval in S having class C .

In the unweighted version, our goal is to compute a maximum size feasible
set of intervals. In the weighted case (WJISP), the goal is to maximize the
weight of a feasible set.

Although the interval selection problem is solvable (very efficiently), the
JISP is NP hard. It is known that it cannot have a PTAS but the best
approximation ratio remains an open problem.
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The greedy algorithm for JISP

We can obtain a 2-approximation for JISP by the same optimal greedy
algorithm that we used for the unweighted interval selection problem.
Namely, the greedy algorithm sorts intervals so that f1 ≤ f2 . . . ≤ fn and
then accepts greedily.

We can prove the stated approximation by a charging argument that
charges intervals in an optimal solution OPT to intervals in the greedy
solution so that at most two intervals in OPT are charged to any interval
in the greedy solution.

The graph theoretic abstraction of interval selection is the class of chordal
graphs. One characterization is that a graph G = (V ,E ) is a chordal
graph is there is an ordering of the vertices v1, v2, . . . vn such that for all i ,
Nbhd(vi ) ∩ {vi+1, . . . , vn} is a clique. Equivalently, there is at most one
independent vertex in Nbhd(vi ) ∩ {vi+1, . . . , vn}.

Such a vertex ordering is called a perfect elimination ordering (PEO).
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Interval graphs are chordal graphs

It can be observed that interval graphs ,intersection graphs of intervals
[sj , fj), are chordal graphs where the ordering is given by f1 ≤ f2 . . . ≤ fn.

Thinking back to our discusion of the greedy algorithm for interval
selection (i.e., the max independent set problem for interval graphs), we
see that the algorithm used the PEO given by non-decreasing finish times
{fj}.

Similarly, we solved interval colouring (i.e., the colouring problem for
interval graphs) used the reverse of the PEO. That is, schedule by sorting
intervals so that s1 ≤ s2 . . . sn and then coloured greedily. Equivalently, we
can sort so that f1 ≥ f2 . . . ≥ fn (i.e., the reverse of the PEO) and colour
greedily.
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Extending chordal graphs

In order to model the JISP problem in graph theoretic terms, we generalize
the idea of a PEO. We csan say that a graph G = (V ,E ) is an inductive
k-independence graph if the vertices can be ordered v1, v2, . . . , vn so that
there are at most k independent vertices in Nbhd(vi ) ∩ {vi+1, . . . , vn}.

We can call such an ordering a k-PEO.

Just as interval graphs are chordal, the intersection graphs induced by the
JISP problem are inductive 2-indepedence graphs where the same ordering
f1 ≤ f2 . . . fn provides the appropriate 2-PEO.

Note: k + 1 claw free graphs are a special case of inductive
k-independence graphs. That is, any ordering of the vertices is a k-PEO.

For example, the intersection graph of translates of a unit radius disk in
2-space is both a a 6-claw free graph and an inductive 4 independence
graph (ordering by non-increasing radius).
How would you approximate the (unweighted) maximumum independent
set and colouring problems for inductive k independence graphs? 36 / 39



An FPTAS for the knapsack problem

We recall our discussion of the knapsack problem from Week 3.

The Knapsack problem

In the knapsack problem we are given a set of n items I1, . . . , In and a
size bound B where where each item Ij = (sj , vj) with sj being the
size of the item and vj the value.

A feasible set is now a subset of items S such that the sum of the
sizes of items in S is at most the bound B.

Goal: Find a feasible set S that maximizes the sum of the values of
items in S .

In general we can allow real valued parameters but in some algorithms
need to restrict attention to integral parameters. But by scaling
inputs this is not a significant restriction.

This is known to be an NP hard problem but as we now recall from
Week 3, it is only “weakly NP hard” and there is an FPTAS for this
problem.
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A DP algorithm for the knapsack problem leading to
an FPTAS

In the first algorithm, if the sizes (or the bound B) are small (i.e.
B = poly(n)) then the algorithm runs in polynomial time.

What if the values {vi} are integral and small?

Consider the following semantic array

W [i , v ] =


minimum size required to obtain at least profit v using

a subset of the items {I1, . . . , Ii} if possible

∞ otherwise

The desired optimum value is max{v : W [n, v ] is at most B}.
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An FPTAS for the knapsack problem

This algorithm can be used as the basis for an efficient approximation
algorithm for all input instances.

The basic idea is relatively simple:
I The high order bits/digits of the values can determine an approximate

solution (disregarding low order bits after rounding up).
I The fewer high order bits we use, the faster the algorithm but the

worse the approximation.
I The goal is to scale the values in terms of a parameter ε so that a

(1 + ε) approximation is obtained with time complexity polynomial in n
and (1/ε).

I The details are given in the DPV text (section 9.2.4) or the KT text
(section 11.8).

I Namely, KT sets v̂i = d vin
εvmax
e where vmax = maxj{vj}. DPV use the

floor b c.
I The running time is O(n3/ε).

I After a sequence of improvements the best time bound is Õ(n + ( 1
ε )

9)
4 ).
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