
CSC373: Algorithm Design, Analysis and
Complexity

Winter/Spring 2020

Allan Borodin and Sara Rahmati

January 6-10, 2020

1 / 37

Introduction

Course Organization: See General Course Info on course web site:
http://www.cs.toronto.edu/∼bor/373s20/

Note: While we may post lecture slides, we will not be relying on
lecture slides but mainly relying on the white/black board and the
texts. There are (at least) three excellent texts for material in this
course. We are using CLRS, DPV, and KT. There may also be
some additional material that we will post. We are hoping for
aninteractive class with everyone reading the suggested sections of
these three texts and any recommended additional material.

TODO: We need to assign students to tutorials. Once we have been
assigned rooms for the tutorials, we will assign students to tutorials by
birthdays. We will (depending on having enough TAas) initially start with
2 or 3 tutorial sections (4-5 Monday for the day time class and 5-7 for the
evening class). The first tutorials will take place on Monday, January 13.
Please check the web page for your assigned tutorial room if this has not
been announced in class. 2 / 37

What is CSC373?

CSC373 is a “compromise course”. Namely, in the desire to give
students more choice, there are only two specific courses which are
required for all CS specialists. Namely we require one “systems
course” CSC369 and one “theory course” CSC373 whereas in the past
we required both an algorithms course and a complexity course. Our
solution was to make CSC373 mainly an algorithms course, but to
also include an introduction to complexity theory. DCS also provides
a 4th year complexity course CSC465 as well as a more advanced
undergraduate algorithms course CSC473.
The complexity part of the course relies on suitable “reductions” and
“transfomations” (i.e., converting an instance of a problem A to an
instance of problem B). As such, since reductions and transformations
are algorithms, this is not an unnatural combination. The main
difference is that we generally use reductions in complexity theory to
provide evidence that something is difficult (rather than use it to
derive new algorithms). More on this later. Indeed most algorithm
textbooks include NP-completeness.

3 / 37

The dividing line between efficiently computable and
NP hardness

Many closely related problems are such that:

One problem has an efficient algorithm (e.g., polynomial time) while a
variant becomes (according to “well accepted” conjectures) difficult to

compute (e.g. requiring exponential time complexity).

For example:
I Interval Scheduling vs Job Interval Scheduling
I Minimum Spanning Tree (MST) vs Bounded degree MST
I MST vs Steiner tree
I Shortest paths vs Longest (simple) paths
I 2-Colourability vs 3-Colourability

Our focus is worst case analysis in contrast to peformance “in
practice”. Why is “practice” in quotes?

4 / 37

Comments and disclaimers on the course
perspective; what this course is and is not about

As this is a required basic course, we are following the perspective of
the standard CS undergraduate texts. However, we may sometimes
introduce ideas relating to current research.

Most CS undergraduate algorithm courses/texts study the high level
presentation of algorithms within the framework of basic algorithmic
paradigms that can be applied in a wide variety of contexts.

Moreover, the perspective is one of studying “worst case”
(adversarial) input instances.

Why not study “average case analysis”

A more applied perspective (i.e., an “algorithmic engineering” course
that say discusses implementations of algorithms in industrial
applications) is beyond the scope of this course.
Why isn’t such a course offered?

5 / 37

Comments and disclaimers on the course
perspective; what this course is and is not about

As this is a required basic course, we are following the perspective of
the standard CS undergraduate texts. However, we may sometimes
introduce ideas relating to current research.

Most CS undergraduate algorithm courses/texts study the high level
presentation of algorithms within the framework of basic algorithmic
paradigms that can be applied in a wide variety of contexts.

Moreover, the perspective is one of studying “worst case”
(adversarial) input instances.
Why not study “average case analysis”

A more applied perspective (i.e., an “algorithmic engineering” course
that say discusses implementations of algorithms in industrial
applications) is beyond the scope of this course.
Why isn’t such a course offered?

5 / 37

Comments and disclaimers on the course
perspective; what this course is and is not about

As this is a required basic course, we are following the perspective of
the standard CS undergraduate texts. However, we may sometimes
introduce ideas relating to current research.

Most CS undergraduate algorithm courses/texts study the high level
presentation of algorithms within the framework of basic algorithmic
paradigms that can be applied in a wide variety of contexts.

Moreover, the perspective is one of studying “worst case”
(adversarial) input instances.
Why not study “average case analysis”

A more applied perspective (i.e., an “algorithmic engineering” course
that say discusses implementations of algorithms in industrial
applications) is beyond the scope of this course.

Why isn’t such a course offered?

5 / 37

Comments and disclaimers on the course
perspective; what this course is and is not about

As this is a required basic course, we are following the perspective of
the standard CS undergraduate texts. However, we may sometimes
introduce ideas relating to current research.

Most CS undergraduate algorithm courses/texts study the high level
presentation of algorithms within the framework of basic algorithmic
paradigms that can be applied in a wide variety of contexts.

Moreover, the perspective is one of studying “worst case”
(adversarial) input instances.
Why not study “average case analysis”

A more applied perspective (i.e., an “algorithmic engineering” course
that say discusses implementations of algorithms in industrial
applications) is beyond the scope of this course.
Why isn’t such a course offered?

5 / 37

What this course is and is not about (continued)

Our focus is on deterministic algorithms for discrete combinatorial
(and some numeric/algebraic) type problems which we study with
respect to sequential time within a von Neumann RAM
computational model.

Even within theoretical CS, there are many focused courses and texts
for particular subfields. At an advanced undergraduate or graduate
level, we might have entire courses on for example, randomized
algorithms, stochastic (i.e., “average case”) analysis, approximation
algorithms, linear programming (and more generally mathematical
programming), online algorithms, parallel algorithms, streaming
algorithms, sublinear time algorithms, spectral algorithms (and more,
generally algebraic algorithms), geometric algorithms, continuous
methods for discrete problems, genetic algorithms, etc.

6 / 37

The growing importance of TCS

Core questions (e.g. P vs NP) have gained prominence in both the
intellectual and popular arenas.

There are relatively recent breakthroughs in faster algorithms and
scalable parallelizable data structures and algorithms, complexity
based cryptography, approximate combinatorial optimization,
pseudo-randomness, coding theory,. . .

TCS has expanded its frontiers.
Many fields rely increasingly on the algorithms and abstractions of
TCS, creating new areas of inquiry within theory and new fields at the
boundaries between TCS and disciplines such as:

I computational biology
I algorithmic game theory
I algorithmic aspects of social networks
I social choice theory

7 / 37

End of introductory comments

We recognize some (many, most?) students may be attending only
because it is required. You may also be wondering “will I ever use any of
the material in this course”? or “Why is this course required”?

How many share this sentiment?

Our goal is to instill some more analytical, precise ways of thinking and
this goes beyond the specific course content. The Design and Analysis of
Algorithms is a required course is almost all North American CS programs.
(It probably is also required throughout the world but we know more about
North America.) So the belief that this kind of thinking is useful and
important is widely accepted. We hope that we can make it seem
meaningful to you now and not just maybe only 10 years from now.

8 / 37

End of introductory comments

We recognize some (many, most?) students may be attending only
because it is required. You may also be wondering “will I ever use any of
the material in this course”? or “Why is this course required”?

How many share this sentiment?

Our goal is to instill some more analytical, precise ways of thinking and
this goes beyond the specific course content. The Design and Analysis of
Algorithms is a required course is almost all North American CS programs.
(It probably is also required throughout the world but we know more about
North America.) So the belief that this kind of thinking is useful and
important is widely accepted. We hope that we can make it seem
meaningful to you now and not just maybe only 10 years from now.

8 / 37

End of introductory comments

We recognize some (many, most?) students may be attending only
because it is required. You may also be wondering “will I ever use any of
the material in this course”? or “Why is this course required”?

How many share this sentiment?

Our goal is to instill some more analytical, precise ways of thinking and
this goes beyond the specific course content. The Design and Analysis of
Algorithms is a required course is almost all North American CS programs.
(It probably is also required throughout the world but we know more about
North America.) So the belief that this kind of thinking is useful and
important is widely accepted. We hope that we can make it seem
meaningful to you now and not just maybe only 10 years from now.

8 / 37

Tentative set of topics)

Introduction and Motivation (We just did it.)

Divide and Conquer (1 week)

Greedy algorithms (1-2 weeks)

Dynamic Programming (1-2 weeks)

Network flows; bipartite matching (1-2 weeks)

NP and NP-completeness; self reduction (2-3 weeks)

Approximation algorithms (to be mentioned throughout term)

Linear Programming; IP/LP rounding (2 weeks)

Local search (1 week)

Randomized algorithms (1 week)

9 / 37

Outline for the course content in Week 1

We will start the course with divide and conquer, a basic algoithmic
paradigm that you are familiar with from say CSC236/CSC240, and
CSC263/CSC265.
The texts contain many examples of divide and conquer as well as how to
solve certain types of recurrences which again you have already seen in
previous courses. So we do not plan to spend too much time on divide and
conquer.
Here is what we will be doing:
(1) An informal statement of the divide and conquer paradigm
Note: Like other paradigms we will consider, we do not present a
precise definition for divide and conquer. For our purposes (and
that of the texts), it is a matter of “you know it when you see it”.
But if we wanted to say prove that a given problem could not be
solved efficiently by (for example) a divide and conquer algorithm
we would need a precise model.

10 / 37

Outline for Week 1 continued

(2) We will choose a few of the many examples taken mainly from the
examples in texts:

CLRS: maximum subarray, Strassen’s matrix multiplication, quicksort,
median and selection in sorted list, dynamic multithreading, the FFT
algorithm, closest pair in R2, sparse cuts in graphs

KT: merge sort, counting imversions, closest pair in R2, integer
multiplication, FFT, quicksort, medians and selection

(3) The typical recurrences; the “master theorem”.
(4) Comments on choosing the right abstraction of the problem.

11 / 37

The divide and conquer paradigm

As roughly stated in DPV chapter 2, the divide and conquer paradigm
solves a problem by:

1 Dividing the problem into smaller subproblems of the same type
Note: In some cases we have to generalize the given problem so as to
lend itself to the paradigm. We will also see this need to generalize in
the dynamic programming paradigm.
Aside: The need to generalize is one reason why it is hard to
formnalize these paradigms.

2 Recursively solving these subproblems

3 Combining the results from the subproblems

12 / 37

Counting inversions from Kevin Wayne’s slides.

Kevin Wayne (at Princeton University) has excellent slides for the material
in the Kleinberg and Tardos text. See
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

As a first example of divide and conquer, we will start with the problem of
counting inversions in an unsorted array. That is, for how many pairs (i , j)
is ai > aj? (As mentioned in Kevin Wayne’s slides, there are important
applications for this problem.)

Like sorting, counting inversions done naively by brute force (i.e., trying
every pair) would result in O(n2) comparisons (and time complexity) for
an array of size n. We assme that everyone is familiar with the merge sort
algorithm that sorts in O(n log n) comparisons.

An elegant way to count inversions in O(n log n) comparisons is to
generalize the problem to sort the array (using merge sort) and count
inversions while doing the merging.
Here follows (some of) the relevant slides.

13 / 37

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Counting inversions by sort and count

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a ∈ A and b ∈ B, assuming A and B are sorted.

独Scan A and B from left to right.

独Compare ai and bj.

独If ai < bj, then ai is not inverted with any element left in B.

独If ai > bj, then bj is inverted with every element left in A.

独Append smaller element to sorted list C.

24

count inversions (a, b) with a ∈ A and b ∈ B

5 2

2 3 7 10 11

merge to form sorted list C

2 11 bj 20 233 7 10 ai 18

14 / 37

Counting inversions by sort and count

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.

Output. Number of inversions in L and L in sorted order.

25

SORT-AND-COUNT(L)

IF (list L has one element)

 RETURN (0, L).

 
Divide the list into two halves A and B.

(rA, A) ← SORT-AND-COUNT(A).

(rB, B) ← SORT-AND-COUNT(B).

(rAB, L) ← MERGE-AND-COUNT(A, B).

 
RETURN (rA + rB + rAB, L).

T (n / 2)

T (n / 2)

Θ(n)

15 / 37

Counting inversions by sort and count

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions

in a permutation of size n in O(n log n) time.

 
Pf. The worst-case running time T(n) satisfies the recurrence:

26

T (n) =

�
�
�

�(1) B7 n = 1

T (�n/2�) + T (�n/2�) + �(n) B7 n > 1
<latexit sha1_base64="3pXfe56Q7VvCgldQ8ZGmWT26i7U=">AAAC2HicbVHLattAFB0pfaTuy0npqpuhTotDwZFCIQmmJdAWukzBbgIaYUbjK3vIaCRmroqN8KKr0m1/pN/Tv+lIUaC2exfD4Zw799xHUihpMQj+eP7Onbv37u8+6Dx89PjJ0+7e/lebl0bAWOQqN1cJt6CkhjFKVHBVGOBZouAyuf5Q65ffwFiZ6xEuC4gzPtMylYKjoybd36O+PqRsSN/VT4clMJO6Eq6iXXXYkI3mgLwfHtLXlCEssKIypQfapYcHdEUZiwYnkMUuddRnKlV5bqg+OqbMNLgu/cYVrkUBUrVaDW+l1kJvWby/tegw0NO2p0m3FwyCJug2CFvQI21cTPa8fTbNRZmBRqG4tVEYFBhX3KAUCtyQpYWCi2s+g8hBzTOwcdVsdkVfOWZKUzdUmmukDfvvj4pn1i6zxGVmHOd2U6vJ/2lRielpXEldlAha3BilpaKY0/pMdCoNCFRLB7gw0vVKxZwbLtAdc82lqV2AWJukWpRainwKG6zCBRpebzHc3Nk2GB8Pzgbhl7e989N2nbvkBXlJ+iQkJ+ScfCYXZEyE99wbeh+9T37kf/d/+D9vUn2v/fOMrIX/6y+lidpE</latexit><latexit sha1_base64="3pXfe56Q7VvCgldQ8ZGmWT26i7U=">AAAC2HicbVHLattAFB0pfaTuy0npqpuhTotDwZFCIQmmJdAWukzBbgIaYUbjK3vIaCRmroqN8KKr0m1/pN/Tv+lIUaC2exfD4Zw799xHUihpMQj+eP7Onbv37u8+6Dx89PjJ0+7e/lebl0bAWOQqN1cJt6CkhjFKVHBVGOBZouAyuf5Q65ffwFiZ6xEuC4gzPtMylYKjoybd36O+PqRsSN/VT4clMJO6Eq6iXXXYkI3mgLwfHtLXlCEssKIypQfapYcHdEUZiwYnkMUuddRnKlV5bqg+OqbMNLgu/cYVrkUBUrVaDW+l1kJvWby/tegw0NO2p0m3FwyCJug2CFvQI21cTPa8fTbNRZmBRqG4tVEYFBhX3KAUCtyQpYWCi2s+g8hBzTOwcdVsdkVfOWZKUzdUmmukDfvvj4pn1i6zxGVmHOd2U6vJ/2lRielpXEldlAha3BilpaKY0/pMdCoNCFRLB7gw0vVKxZwbLtAdc82lqV2AWJukWpRainwKG6zCBRpebzHc3Nk2GB8Pzgbhl7e989N2nbvkBXlJ+iQkJ+ScfCYXZEyE99wbeh+9T37kf/d/+D9vUn2v/fOMrIX/6y+lidpE</latexit><latexit sha1_base64="3pXfe56Q7VvCgldQ8ZGmWT26i7U=">AAAC2HicbVHLattAFB0pfaTuy0npqpuhTotDwZFCIQmmJdAWukzBbgIaYUbjK3vIaCRmroqN8KKr0m1/pN/Tv+lIUaC2exfD4Zw799xHUihpMQj+eP7Onbv37u8+6Dx89PjJ0+7e/lebl0bAWOQqN1cJt6CkhjFKVHBVGOBZouAyuf5Q65ffwFiZ6xEuC4gzPtMylYKjoybd36O+PqRsSN/VT4clMJO6Eq6iXXXYkI3mgLwfHtLXlCEssKIypQfapYcHdEUZiwYnkMUuddRnKlV5bqg+OqbMNLgu/cYVrkUBUrVaDW+l1kJvWby/tegw0NO2p0m3FwyCJug2CFvQI21cTPa8fTbNRZmBRqG4tVEYFBhX3KAUCtyQpYWCi2s+g8hBzTOwcdVsdkVfOWZKUzdUmmukDfvvj4pn1i6zxGVmHOd2U6vJ/2lRielpXEldlAha3BilpaKY0/pMdCoNCFRLB7gw0vVKxZwbLtAdc82lqV2AWJukWpRainwKG6zCBRpebzHc3Nk2GB8Pzgbhl7e989N2nbvkBXlJ+iQkJ+ScfCYXZEyE99wbeh+9T37kf/d/+D9vUn2v/fOMrIX/6y+lidpE</latexit><latexit sha1_base64="3pXfe56Q7VvCgldQ8ZGmWT26i7U=">AAAC2HicbVHLattAFB0pfaTuy0npqpuhTotDwZFCIQmmJdAWukzBbgIaYUbjK3vIaCRmroqN8KKr0m1/pN/Tv+lIUaC2exfD4Zw799xHUihpMQj+eP7Onbv37u8+6Dx89PjJ0+7e/lebl0bAWOQqN1cJt6CkhjFKVHBVGOBZouAyuf5Q65ffwFiZ6xEuC4gzPtMylYKjoybd36O+PqRsSN/VT4clMJO6Eq6iXXXYkI3mgLwfHtLXlCEssKIypQfapYcHdEUZiwYnkMUuddRnKlV5bqg+OqbMNLgu/cYVrkUBUrVaDW+l1kJvWby/tegw0NO2p0m3FwyCJug2CFvQI21cTPa8fTbNRZmBRqG4tVEYFBhX3KAUCtyQpYWCi2s+g8hBzTOwcdVsdkVfOWZKUzdUmmukDfvvj4pn1i6zxGVmHOd2U6vJ/2lRielpXEldlAha3BilpaKY0/pMdCoNCFRLB7gw0vVKxZwbLtAdc82lqV2AWJukWpRainwKG6zCBRpebzHc3Nk2GB8Pzgbhl7e989N2nbvkBXlJ+iQkJ+ScfCYXZEyE99wbeh+9T37kf/d/+D9vUn2v/fOMrIX/6y+lidpE</latexit>

16 / 37

Closest pair in R2 from Kevin Wayne’s slides

33

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 Compute separation line L such that half the points

 are on one side and half on the other side.

 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between

 each point and next 11 neighbors. If any of these

 distances is less than δ, update δ.

 return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Figure: Closest pairs from Kevin Wayne’s slides

17 / 37

Recurrences describing divide and conquer
algorithms

From previous courses (and previous examples), we have seen the
recurrences describing the divide and conquer algorithms for counting
inversions and closest points in R2. Namely
T (n) = 2T (n/2) + O(n) and T (1) = O(1) so that
T (n) = O(n log n).

The next two divide and couquer examples examples result in
recurrences of the form T (n) = aT (n/b) + f (n) for a > b where
f (n) = O(nlogb a−ε) for some ε > 0. so that T (n) = nlogb a.

These are all cases of the so called master theorem

18 / 37

The master theorem

Here is the master theorem as it appears in CLRS

94 Chapter 4 Divide-and-Conquer

The recurrence (4.20) describes the running time of an algorithm that divides a
problem of size n into a subproblems, each of size n=b, where a and b are positive
constants. The a subproblems are solved recursively, each in time T .n=b/. The
function f .n/ encompasses the cost of dividing the problem and combining the
results of the subproblems. For example, the recurrence arising from Strassen’s
algorithm has a D 7, b D 2, and f .n/ D ‚.n2/.

As a matter of technical correctness, the recurrence is not actually well defined,
because n=b might not be an integer. Replacing each of the a terms T .n=b/ with
either T .bn=bc/ or T .dn=be/ will not affect the asymptotic behavior of the recur-
rence, however. (We will prove this assertion in the next section.) We normally
find it convenient, therefore, to omit the floor and ceiling functions when writing
divide-and-conquer recurrences of this form.

The master theorem
The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Let a ! 1 and b > 1 be constants, let f .n/ be a function, and let T .n/ be defined
on the nonnegative integers by the recurrence
T .n/ D aT .n=b/C f .n/ ;

where we interpret n=b to mean either bn=bc or dn=be. Then T .n/ has the follow-
ing asymptotic bounds:
1. If f .n/ D O.nlogb a!!/ for some constant ! > 0, then T .n/ D ‚.nlogb a/.
2. If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lg n/.
3. If f .n/ D ".nlogb aC!/ for some constant ! > 0, and if af .n=b/ " cf .n/ for

some constant c < 1 and all sufficiently large n, then T .n/ D ‚.f .n//.

Before applying the master theorem to some examples, let’s spend a moment
trying to understand what it says. In each of the three cases, we compare the
function f .n/ with the function nlogb a. Intuitively, the larger of the two functions
determines the solution to the recurrence. If, as in case 1, the function nlogb a is the
larger, then the solution is T .n/ D ‚.nlogb a/. If, as in case 3, the function f .n/
is the larger, then the solution is T .n/ D ‚.f .n//. If, as in case 2, the two func-
tions are the same size, we multiply by a logarithmic factor, and the solution is
T .n/ D ‚.nlogb a lg n/ D ‚.f .n/ lg n/.

Beyond this intuition, you need to be aware of some technicalities. In the first
case, not only must f .n/ be smaller than nlogb a, it must be polynomially smaller.

19 / 37

Karatsuba’s interger multiplication from Kevin
Wayne’s slides

10

To multiply two n-bit integers a and b:

 Add two ½n bit integers.

 Multiply three ½n-bit integers, recursively.

 Add, subtract, and shift to obtain result.

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers

in O(n1.585) bit operations.

Karatsuba Multiplication

!

T (n) " T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4
+ '(n)

add, subtract, shift

1 2 4 3 4
(T (n) = O(n

lg 3
) = O(n

1.585
)

!

a = 2
n / 2

" a1 + a0

b = 2
n / 2

"b1 + b0

ab = 2
n
" a1b1 + 2

n / 2
" a1b0 + a0b1() + a0b0

= 2
n
" a1b1 + 2

n / 2
" (a1 + a0) (b1 +b0) # a1b1 # a0b0() + a0b0

1 2 1 33

20 / 37

Strassen’s n × n fast matrix multiplication

This algorithm is described in all the texts. While there is some question
as to when fast matrix multiplicaton (Strassen’s and subsequent
asymptotically faster algorithms) has practical application, it plays a
seminal role in theoretical computer science.

The standard method to multiply two n× n matrices requires O(n3) scalar
(+, ·) operations. There were conjectures (and a published false proof!)
that any algorithm for matrix multipication requires Ω(n3) scalar
operations.

Why would you make such a conjecture? And why is this such a seminal
result?

Theorem (Strassen): Matrix multiplcation (over any ring) can be
realized in O(nlog2 7) scalar operations.

Furthermore, Strassen shows that matrix inversion for a non-singluar
matrix reduces (and is equivalent) to matrix multiplication.

21 / 37

Strassen’s n × n fast matrix multiplication

This algorithm is described in all the texts. While there is some question
as to when fast matrix multiplicaton (Strassen’s and subsequent
asymptotically faster algorithms) has practical application, it plays a
seminal role in theoretical computer science.

The standard method to multiply two n× n matrices requires O(n3) scalar
(+, ·) operations. There were conjectures (and a published false proof!)
that any algorithm for matrix multipication requires Ω(n3) scalar
operations.

Why would you make such a conjecture? And why is this such a seminal
result?

Theorem (Strassen): Matrix multiplcation (over any ring) can be
realized in O(nlog2 7) scalar operations.

Furthermore, Strassen shows that matrix inversion for a non-singluar
matrix reduces (and is equivalent) to matrix multiplication.

21 / 37

Strassen’s n × n fast matrix multiplication

This algorithm is described in all the texts. While there is some question
as to when fast matrix multiplicaton (Strassen’s and subsequent
asymptotically faster algorithms) has practical application, it plays a
seminal role in theoretical computer science.

The standard method to multiply two n× n matrices requires O(n3) scalar
(+, ·) operations. There were conjectures (and a published false proof!)
that any algorithm for matrix multipication requires Ω(n3) scalar
operations.

Why would you make such a conjecture? And why is this such a seminal
result?

Theorem (Strassen): Matrix multiplcation (over any ring) can be
realized in O(nlog2 7) scalar operations.

Furthermore, Strassen shows that matrix inversion for a non-singluar
matrix reduces (and is equivalent) to matrix multiplication.

21 / 37

Strassen’s n × n fast matrix multiplication

This algorithm is described in all the texts. While there is some question
as to when fast matrix multiplicaton (Strassen’s and subsequent
asymptotically faster algorithms) has practical application, it plays a
seminal role in theoretical computer science.

The standard method to multiply two n× n matrices requires O(n3) scalar
(+, ·) operations. There were conjectures (and a published false proof!)
that any algorithm for matrix multipication requires Ω(n3) scalar
operations.

Why would you make such a conjecture? And why is this such a seminal
result?

Theorem (Strassen): Matrix multiplcation (over any ring) can be
realized in O(nlog2 7) scalar operations.

Furthermore, Strassen shows that matrix inversion for a non-singluar
matrix reduces (and is equivalent) to matrix multiplication.

21 / 37

Strassen’s matrix multiplication continued

The high level idea is conceptually simple. The method is based on
Strassen’s insightful (and not simple) discovery that 2× 2 matrix
multiplication can be realized in 7 (not 8) non-commutative
multiplications and 18 additions. (Note: the number of additions will only
impact the hidden constant in the “big O” notation and not the matrix
mutliplication exponent.)

The insights into the 2× 2 method are beyond the scope of this course so
lets just see how the n × n result follows. Without loss of generality, let
n = 2k for some k .

76 Chapter 4 Divide-and-Conquer

for loop of lines 4–7 computes each of the entries cij , for each column j . Line 5
initializes cij to 0 as we start computing the sum given in equation (4.8), and each
iteration of the for loop of lines 6–7 adds in one more term of equation (4.8).

Because each of the triply-nested for loops runs exactly n iterations, and each
execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY proce-
dure takes ‚.n3/ time.

You might at first think that any matrix multiplication algorithm must take !.n3/
time, since the natural definition of matrix multiplication requires that many mul-
tiplications. You would be incorrect, however: we have a way to multiply matrices
in o.n3/ time. In this section, we shall see Strassen’s remarkable recursive algo-
rithm for multiplying n ! n matrices. It runs in ‚.nlg 7/ time, which we shall show
in Section 4.5. Since lg 7 lies between 2:80 and 2:81, Strassen’s algorithm runs in
O.n2:81/ time, which is asymptotically better than the simple SQUARE-MATRIX-
MULTIPLY procedure.

A simple divide-and-conquer algorithm
To keep things simple, when we use a divide-and-conquer algorithm to compute
the matrix product C D A " B , we assume that n is an exact power of 2 in each of
the n ! n matrices. We make this assumption because in each divide step, we will
divide n ! n matrices into four n=2 ! n=2 matrices, and by assuming that n is an
exact power of 2, we are guaranteed that as long as n # 2, the dimension n=2 is an
integer.

Suppose that we partition each of A, B , and C into four n=2 ! n=2 matrices

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
; (4.9)

so that we rewrite the equation C D A " B as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"
"
!

B11 B12

B21 B22

"
: (4.10)

Equation (4.10) corresponds to the four equations
C11 D A11 " B11 C A12 " B21 ; (4.11)
C12 D A11 " B12 C A12 " B22 ; (4.12)
C21 D A21 " B11 C A22 " B21 ; (4.13)
C22 D A21 " B12 C A22 " B22 : (4.14)
Each of these four equations specifies two multiplications of n=2 ! n=2 matrices
and the addition of their n=2 ! n=2 products. We can use these equations to create
a straightforward, recursive, divide-and-conquer algorithm:

Figure: Viewing an n × n matrix as four n/2× n/2 matrices

22 / 37

Strassen’s matrix multiplication continued

The high level idea is conceptually simple. The method is based on
Strassen’s insightful (and not simple) discovery that 2× 2 matrix
multiplication can be realized in 7 (not 8) non-commutative
multiplications and 18 additions. (Note: the number of additions will only
impact the hidden constant in the “big O” notation and not the matrix
mutliplication exponent.)

The insights into the 2× 2 method are beyond the scope of this course so
lets just see how the n × n result follows. Without loss of generality, let
n = 2k for some k .

76 Chapter 4 Divide-and-Conquer

for loop of lines 4–7 computes each of the entries cij , for each column j . Line 5
initializes cij to 0 as we start computing the sum given in equation (4.8), and each
iteration of the for loop of lines 6–7 adds in one more term of equation (4.8).

Because each of the triply-nested for loops runs exactly n iterations, and each
execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY proce-
dure takes ‚.n3/ time.

You might at first think that any matrix multiplication algorithm must take !.n3/
time, since the natural definition of matrix multiplication requires that many mul-
tiplications. You would be incorrect, however: we have a way to multiply matrices
in o.n3/ time. In this section, we shall see Strassen’s remarkable recursive algo-
rithm for multiplying n ! n matrices. It runs in ‚.nlg 7/ time, which we shall show
in Section 4.5. Since lg 7 lies between 2:80 and 2:81, Strassen’s algorithm runs in
O.n2:81/ time, which is asymptotically better than the simple SQUARE-MATRIX-
MULTIPLY procedure.

A simple divide-and-conquer algorithm
To keep things simple, when we use a divide-and-conquer algorithm to compute
the matrix product C D A " B , we assume that n is an exact power of 2 in each of
the n ! n matrices. We make this assumption because in each divide step, we will
divide n ! n matrices into four n=2 ! n=2 matrices, and by assuming that n is an
exact power of 2, we are guaranteed that as long as n # 2, the dimension n=2 is an
integer.

Suppose that we partition each of A, B , and C into four n=2 ! n=2 matrices

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
; (4.9)

so that we rewrite the equation C D A " B as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"
"
!

B11 B12

B21 B22

"
: (4.10)

Equation (4.10) corresponds to the four equations
C11 D A11 " B11 C A12 " B21 ; (4.11)
C12 D A11 " B12 C A12 " B22 ; (4.12)
C21 D A21 " B11 C A22 " B21 ; (4.13)
C22 D A21 " B12 C A22 " B22 : (4.14)
Each of these four equations specifies two multiplications of n=2 ! n=2 matrices
and the addition of their n=2 ! n=2 products. We can use these equations to create
a straightforward, recursive, divide-and-conquer algorithm:

Figure: Viewing an n × n matrix as four n/2× n/2 matrices

22 / 37

Strassen’s matrix multiplication continued

The high level idea is conceptually simple. The method is based on
Strassen’s insightful (and not simple) discovery that 2× 2 matrix
multiplication can be realized in 7 (not 8) non-commutative
multiplications and 18 additions. (Note: the number of additions will only
impact the hidden constant in the “big O” notation and not the matrix
mutliplication exponent.)

The insights into the 2× 2 method are beyond the scope of this course so
lets just see how the n × n result follows. Without loss of generality, let
n = 2k for some k .

76 Chapter 4 Divide-and-Conquer

for loop of lines 4–7 computes each of the entries cij , for each column j . Line 5
initializes cij to 0 as we start computing the sum given in equation (4.8), and each
iteration of the for loop of lines 6–7 adds in one more term of equation (4.8).

Because each of the triply-nested for loops runs exactly n iterations, and each
execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY proce-
dure takes ‚.n3/ time.

You might at first think that any matrix multiplication algorithm must take !.n3/
time, since the natural definition of matrix multiplication requires that many mul-
tiplications. You would be incorrect, however: we have a way to multiply matrices
in o.n3/ time. In this section, we shall see Strassen’s remarkable recursive algo-
rithm for multiplying n ! n matrices. It runs in ‚.nlg 7/ time, which we shall show
in Section 4.5. Since lg 7 lies between 2:80 and 2:81, Strassen’s algorithm runs in
O.n2:81/ time, which is asymptotically better than the simple SQUARE-MATRIX-
MULTIPLY procedure.

A simple divide-and-conquer algorithm
To keep things simple, when we use a divide-and-conquer algorithm to compute
the matrix product C D A " B , we assume that n is an exact power of 2 in each of
the n ! n matrices. We make this assumption because in each divide step, we will
divide n ! n matrices into four n=2 ! n=2 matrices, and by assuming that n is an
exact power of 2, we are guaranteed that as long as n # 2, the dimension n=2 is an
integer.

Suppose that we partition each of A, B , and C into four n=2 ! n=2 matrices

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
; (4.9)

so that we rewrite the equation C D A " B as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"
"
!

B11 B12

B21 B22

"
: (4.10)

Equation (4.10) corresponds to the four equations
C11 D A11 " B11 C A12 " B21 ; (4.11)
C12 D A11 " B12 C A12 " B22 ; (4.12)
C21 D A21 " B11 C A22 " B21 ; (4.13)
C22 D A21 " B12 C A22 " B22 : (4.14)
Each of these four equations specifies two multiplications of n=2 ! n=2 matrices
and the addition of their n=2 ! n=2 products. We can use these equations to create
a straightforward, recursive, divide-and-conquer algorithm:

Figure: Viewing an n × n matrix as four n/2× n/2 matrices

22 / 37

Strassen’s matrix multiplication continued

Since matrices are a non commutative ring (i.e., matrix multiplication is
not commutative), the 2× 2 result can be applied so that an n × n
mutilpication can be realized in 7 n/2× n/2 matrix multiplications (and
18 matrix additions).

Since matrix addition uses only O(n2) scalar operations, the number T (n)
of scalar opeations is determined by the recurrence :

T (n) = 7 ∗ T (n/2) + O(n2) with T (1) = 1.

This implies the stated result that T (n) = O(nlog2 7).

23 / 37

Strassen’s matrix multiplication continued

Since matrices are a non commutative ring (i.e., matrix multiplication is
not commutative), the 2× 2 result can be applied so that an n × n
mutilpication can be realized in 7 n/2× n/2 matrix multiplications (and
18 matrix additions).

Since matrix addition uses only O(n2) scalar operations, the number T (n)
of scalar opeations is determined by the recurrence :

T (n) = 7 ∗ T (n/2) + O(n2) with T (1) = 1.

This implies the stated result that T (n) = O(nlog2 7).

23 / 37

Other examples of the master theorem

There are a few other cases of the master theorem that often occur. We
will assume that T (1) = O(1).

The recurrence T (n) = 2T (n/2) + O(1) and T (1) = O(1) implies
T (n) = O(n)
A not so useful example: finidng the maximum element in an
unsorted list.
Somewhat perhaps more useful is to find the minimum and maximum
element in d3n2 e comparisons.

The recurrence T (n) = T (n/b) + O(n) for b > 1 implies
T (n) = O(n).
For an example, see exercise 4-5 in CLRS (page 109). Later we will
discuss how to find the median element in an unsorted list in O(n).

The recurrence T (n) = T (n/b) + O(1) for b > 1 implies
T (n) = O(log n).
The standard binary search in a sorted list is a typical example.

24 / 37

What has to be proven?

In general, when analyzing an algorithm, we have to do two basic things:

1 Prove coorectnesss; that is, that the algorithm realizes the required
problem specification. For example, for Strassen’s matrix
multiplication, it must be shown that the output matrix is the
product of the two input matrices. For the closest pair problem we
need to prove that the output is the closest pair of points; that is,
that an optimal solution was obtained. Later, when considering
approximation algorithms, we need to prove that the algorithm
produces a feasible solution within some factor of an optimal solution.

2 Analyze the complexity of the algorithm in terms of the input
parameters of the problem. For us, we will mainly be interested in the
(sequential) time of the algorithm as a function T () of the “size” of
the input representation. For example, in n × n matrix multiplication,
the usual measure of “size” is the size n of the matrices. But if were
considering the multiplication of Am,n · Bn,p, we would want to
analyze the time complexity T (m, n, p).

25 / 37

More on compelxity analysis

For divide and conquer, we analyze the complexity by establishing a
recurrence and then solving that recurrence. For us, the recurrences
are usually solved by the master theorem. In fact, if we know the
desired time bound, we can sometimes guess a suitable recurrence
which may suggest a framework for a possible solution.
There are other important complexity measures besides sequential
time, including parallel time (if we are in a model of parallel
computation) and memory space.
For much of our algorithm analysis (as in all the previous examples
except integer multiplication), we are assumiung a random access
model and counting the number of machine operations (e.g.,
comparisons, arithmetic operations) ignoring representation issues
(e.g., the number of bits or digits in the matrix entries, or the
representation of the “real numbers” in the closest pair problem). For
interger multiplcation, we measured the “size” of the input
representation in terms of the number of bits or digits of the two
numbers.

26 / 37

Looking ahead to complexity theory

When we get to complexity theory, the standard measure is the nunber of
bits (or digits) in the representation of the inputs. In particular, when
discussing the “P vs NP issue and NP completeness, we assume that we
have string (o0ver some finite alphabet) representation of the inputs. (We
will not usually have to worry about the size of the output.)

This makes sense as for example, in integer factoring (the basis for RSA
cryptography) it would not make good sense to measure complexity of the
value x of the number being factored but rather we need to measure
compexity as a function of the number of bits (or digits) to represent x .
Why?

This distinction (between the value of say an integer and its representation
length) will also become important when we discuss the knapsack problem
in the context of dynamic programming.

27 / 37

Looking ahead to complexity theory

When we get to complexity theory, the standard measure is the nunber of
bits (or digits) in the representation of the inputs. In particular, when
discussing the “P vs NP issue and NP completeness, we assume that we
have string (o0ver some finite alphabet) representation of the inputs. (We
will not usually have to worry about the size of the output.)

This makes sense as for example, in integer factoring (the basis for RSA
cryptography) it would not make good sense to measure complexity of the
value x of the number being factored but rather we need to measure
compexity as a function of the number of bits (or digits) to represent x .
Why?

This distinction (between the value of say an integer and its representation
length) will also become important when we discuss the knapsack problem
in the context of dynamic programming.

27 / 37

Computing the median and selecting the i th smallest
element

As a special case of the third part of the master theorem, the recurrence
T (n) = T (n/b) + O(n) implies T (n) = O(n).

We would like to design an algorithm for computing the median in an
unsorted list of n elements using only O(n) comparisons. (We can rather
more naively simply sort using time O(n log n) comparisons.) There is a
deterministic algorithm based on this recurrence but it is simpler to
consider a randomized algorithm whose expected time is O(n).

It turns out that in trying to come up with an appropriate divide and
conquer algorithm for the median, it is “more natural” to consider the
more general problem of selecting the i th smallest (or largest) element.

The following approach is based on the partitioning idea in randomized
quicksort, and then using the intended recurrence to motivate the selection
algorithm (see sections 7.1 and 9.2 in CLRS).

28 / 37

In-place partition

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

Figure: In-place parition
29 / 37

Randomized quicksort

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.Figure: Quicksort

30 / 37

Randomized selection of i th smallest in A[p], . . . ,A[r]

216 Chapter 9 Medians and Order Statistics

RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION intro-
duced in Section 7.3. Thus, like RANDOMIZED-QUICKSORT, it is a randomized al-
gorithm, since its behavior is determined in part by the output of a random-number
generator. The following code for RANDOMIZED-SELECT returns the i th smallest
element of the array AŒp : : r !.

RANDOMIZED-SELECT.A; p; r; i/

1 if p == r
2 return AŒp!
3 q D RANDOMIZED-PARTITION.A; p; r/
4 k D q ! p C 1
5 if i == k // the pivot value is the answer
6 return AŒq!
7 elseif i < k
8 return RANDOMIZED-SELECT.A; p; q ! 1; i/
9 else return RANDOMIZED-SELECT.A; q C 1; r; i ! k/

The RANDOMIZED-SELECT procedure works as follows. Line 1 checks for the
base case of the recursion, in which the subarray AŒp : : r ! consists of just one
element. In this case, i must equal 1, and we simply return AŒp! in line 2 as the
i th smallest element. Otherwise, the call to RANDOMIZED-PARTITION in line 3
partitions the array AŒp : : r ! into two (possibly empty) subarrays AŒp : : q ! 1!
and AŒq C 1 : : r ! such that each element of AŒp : : q ! 1! is less than or equal
to AŒq!, which in turn is less than each element of AŒq C 1 : : r !. As in quicksort,
we will refer to AŒq! as the pivot element. Line 4 computes the number k of
elements in the subarray AŒp : : q!, that is, the number of elements in the low side
of the partition, plus one for the pivot element. Line 5 then checks whether AŒq! is
the i th smallest element. If it is, then line 6 returns AŒq!. Otherwise, the algorithm
determines in which of the two subarrays AŒp : : q ! 1! and AŒq C 1 : : r ! the i th
smallest element lies. If i < k, then the desired element lies on the low side of
the partition, and line 8 recursively selects it from the subarray. If i > k, however,
then the desired element lies on the high side of the partition. Since we already
know k values that are smaller than the i th smallest element of AŒp : : r !—namely,
the elements of AŒp : : q!—the desired element is the .i ! k/th smallest element
of AŒqC1 : : r !, which line 9 finds recursively. The code appears to allow recursive
calls to subarrays with 0 elements, but Exercise 9.2-1 asks you to show that this
situation cannot happen.

The worst-case running time for RANDOMIZED-SELECT is ‚.n2/, even to find
the minimum, because we could be extremely unlucky and always partition around
the largest remaining element, and partitioning takes ‚.n/ time. We will see that

Figure: Randomized selection

31 / 37

The DFT and FFT

One of the most important procedures in signal processing is the use of
the Fast Fourier Transform (FFT). The FFT is an algorithm for computing
the Discrete Fourier Transform (DFT).

To define the DFT, we need the concept of a primitive nth root of unity in
(say) the complex plane. Namely, ω is a primitive nth root of unity if

1 ωn = 1

2 ωi 6= 1 for 0 < i < n.

a
For simpliity (but now this is a restriction) assume n = 2k for some integer
k ≥ 1.

If ω is a primitive nth root of unity then ω2 is a primtive (n/2)th root
of unity.

If ω is a primitive nth root of unity then ω−1 is a primitive primitive
nth root of unity.

32 / 37

Defining the DFT

The DFTn is defined as a matrix vector multiplcation y = V · a where V is
a Vandermond matrix with respect to the primitive nth root of unity ωn.30.2 The DFT and FFT 913!

y0

y1

y2

y3

:::
yn!1

"
D

!
1 1 1 1 ! ! ! 1

1 !n !2
n !3

n ! ! ! !n!1
n

1 !2
n !4

n !6
n ! ! ! !2.n!1/

n

1 !3
n !6

n !9
n ! ! ! !3.n!1/

n
:::

:::
:::

:::
: : :

:::
1 !n!1

n !2.n!1/
n !3.n!1/

n ! ! ! !.n!1/.n!1/
n

"!
a0

a1

a2

a3

:::
an!1

"
:

The .k; j / entry of Vn is !kj
n , for j; k D 0; 1; : : : ; n " 1. The exponents of the

entries of Vn form a multiplication table.
For the inverse operation, which we write as a D DFT!1

n .y/, we proceed by
multiplying y by the matrix V !1

n , the inverse of Vn.

Theorem 30.7
For j; k D 0; 1; : : : ; n " 1, the .j; k/ entry of V !1

n is !!kj
n =n.

Proof We show that V !1
n Vn D In, the n # n identity matrix. Consider the .j; j 0/

entry of V !1
n Vn:

ŒV !1
n Vn!jj 0 D

n!1X

kD0

.!!kj
n =n/.!kj 0

n /

D
n!1X

kD0

!k.j 0!j /
n =n :

This summation equals 1 if j 0 D j , and it is 0 otherwise by the summation lemma
(Lemma 30.6). Note that we rely on ".n " 1/ $ j 0 " j $ n " 1, so that j 0 " j is
not divisible by n, in order for the summation lemma to apply.

Given the inverse matrix V !1
n , we have that DFT!1

n .y/ is given by

aj D
1

n

n!1X

kD0

yk!!kj
n (30.11)

for j D 0; 1; : : : ; n " 1. By comparing equations (30.8) and (30.11), we see that
by modifying the FFT algorithm to switch the roles of a and y, replace !n by !!1

n ,
and divide each element of the result by n, we compute the inverse DFT (see Ex-
ercise 30.2-4). Thus, we can compute DFT!1

n in ‚.n lg n/ time as well.
We see that, by using the FFT and the inverse FFT, we can transform a poly-

nomial of degree-bound n back and forth between its coefficient representation
and a point-value representation in time ‚.n lg n/. In the context of polynomial
multiplication, we have shown the following.

Figure: The nth order DFTn where ωn is a primitive nth root of unity

Note: We assuming that n = 2k for some integer k ≥ 0. For some
applications of the FFT, we cannot make this assumption and then a more
substantial development is needed. However, the DFT is well defined for
all n.

33 / 37

The FFT; Computing the DFTn in O(n log n)
arithmetic operations

In general, computing a matrix vector product Gn×n · z requires Θ(n2)
arithmetic operations. But the Vandermonde matrix is obviously a special
matrix.

Observation 1: We can think of the matrix vector product V · a as the
evaluation of the polynomial

∑n−1
i=0 aix

i at the n points xi = ωi
n for

i = 0, . . . , n − 1.

Observation 2: If ωn is a primitve nth root of unity then ωn/2 = ω2
n is a

primitive (n2)th root of unity and ω
n/2
n/2 = 1. (Recall we are assuming

n = 2k .)

To hopefully simplify notation, let ωn,j denote ωj
n so that our goal is to

evaluate a(x) at the n points ωn,j (j = 0, 1, . . . , n − 1).

34 / 37

The FFT continued: the basic obervation

We can express polynomial evaluation as follows:∑n−1
i=0 aix

i =
∑ n

2
−1

i=0 a2ix
2i + x

∑ n
2
−1

i=0 a2i+1x
2i (i.e. even terms + odd

terms)

Therefore,∑n−1
i=0 aiω

i
n,j =

∑ n
2
−1

i=0 a2iω
2i
n,j + ωn

∑ n
2
−1

i=0 a2i+1ω
2i
n,j

=
∑ n

2
−1

i=0 aiω
i
n/2,j + ωn,j

∑ n
2
−1

i=0 aiω
i
n/2,j when x = ωn,j

It follows that by this rearrangement, the computation of DFTn reduces to
two instances of the DFTn/2 + n scalar multiplications + n scalar
additions.
Therefore T (n) = 2T (n/2) + O(n)

The DFT/FFT is discussed in CLRS, section 30.2. We will elaborate a
little more in the next lecture.

35 / 37

The FFT continued: the basic obervation

We can express polynomial evaluation as follows:∑n−1
i=0 aix

i =
∑ n

2
−1

i=0 a2ix
2i + x

∑ n
2
−1

i=0 a2i+1x
2i (i.e. even terms + odd

terms)
Therefore,∑n−1

i=0 aiω
i
n,j =

∑ n
2
−1

i=0 a2iω
2i
n,j + ωn

∑ n
2
−1

i=0 a2i+1ω
2i
n,j

=
∑ n

2
−1

i=0 aiω
i
n/2,j + ωn,j

∑ n
2
−1

i=0 aiω
i
n/2,j when x = ωn,j

It follows that by this rearrangement, the computation of DFTn reduces to
two instances of the DFTn/2 + n scalar multiplications + n scalar
additions.
Therefore T (n) = 2T (n/2) + O(n)

The DFT/FFT is discussed in CLRS, section 30.2. We will elaborate a
little more in the next lecture.

35 / 37

The FFT continued: the basic obervation

We can express polynomial evaluation as follows:∑n−1
i=0 aix

i =
∑ n

2
−1

i=0 a2ix
2i + x

∑ n
2
−1

i=0 a2i+1x
2i (i.e. even terms + odd

terms)
Therefore,∑n−1

i=0 aiω
i
n,j =

∑ n
2
−1

i=0 a2iω
2i
n,j + ωn

∑ n
2
−1

i=0 a2i+1ω
2i
n,j

=
∑ n

2
−1

i=0 aiω
i
n/2,j + ωn,j

∑ n
2
−1

i=0 aiω
i
n/2,j when x = ωn,j

It follows that by this rearrangement, the computation of DFTn reduces to
two instances of the DFTn/2 + n scalar multiplications + n scalar
additions.
Therefore T (n) = 2T (n/2) + O(n)

The DFT/FFT is discussed in CLRS, section 30.2. We will elaborate a
little more in the next lecture.

35 / 37

Solving recurrences

Once we know (or have good intuition) for what the solution of a
recurrence is, we can usually verify the solution by induction.

What should we do when we don’t yet know what to expect?

Well, of course, one can look up many examples of recurrences say on the
internet and that often works.
And if that doesn’t work?
Perhaps the most common approach is to start to unwind the recurrence
to see if it suggests a pattern . The CLRS text calls this the recursion tree
method. (Of course, “seeing this pattern” is somewhat of an art form and
some recurrences are not easy to solve.)

In most cases, if we are only intersted in asymptotic bounds, then we can
assume say that n has some special form such as n = 2k for some k ≥ 0
and that eliminates the concern for handling floors and ceilings.

An easy and common recureence to derive this way is
T (n) = 2T (n/2) + O(n).

36 / 37

Solving recurrences

Once we know (or have good intuition) for what the solution of a
recurrence is, we can usually verify the solution by induction.

What should we do when we don’t yet know what to expect?
Well, of course, one can look up many examples of recurrences say on the
internet and that often works.

And if that doesn’t work?
Perhaps the most common approach is to start to unwind the recurrence
to see if it suggests a pattern . The CLRS text calls this the recursion tree
method. (Of course, “seeing this pattern” is somewhat of an art form and
some recurrences are not easy to solve.)

In most cases, if we are only intersted in asymptotic bounds, then we can
assume say that n has some special form such as n = 2k for some k ≥ 0
and that eliminates the concern for handling floors and ceilings.

An easy and common recureence to derive this way is
T (n) = 2T (n/2) + O(n).

36 / 37

Solving recurrences

Once we know (or have good intuition) for what the solution of a
recurrence is, we can usually verify the solution by induction.

What should we do when we don’t yet know what to expect?
Well, of course, one can look up many examples of recurrences say on the
internet and that often works.
And if that doesn’t work?

Perhaps the most common approach is to start to unwind the recurrence
to see if it suggests a pattern . The CLRS text calls this the recursion tree
method. (Of course, “seeing this pattern” is somewhat of an art form and
some recurrences are not easy to solve.)

In most cases, if we are only intersted in asymptotic bounds, then we can
assume say that n has some special form such as n = 2k for some k ≥ 0
and that eliminates the concern for handling floors and ceilings.

An easy and common recureence to derive this way is
T (n) = 2T (n/2) + O(n).

36 / 37

Solving recurrences

Once we know (or have good intuition) for what the solution of a
recurrence is, we can usually verify the solution by induction.

What should we do when we don’t yet know what to expect?
Well, of course, one can look up many examples of recurrences say on the
internet and that often works.
And if that doesn’t work?
Perhaps the most common approach is to start to unwind the recurrence
to see if it suggests a pattern . The CLRS text calls this the recursion tree
method. (Of course, “seeing this pattern” is somewhat of an art form and
some recurrences are not easy to solve.)

In most cases, if we are only intersted in asymptotic bounds, then we can
assume say that n has some special form such as n = 2k for some k ≥ 0
and that eliminates the concern for handling floors and ceilings.

An easy and common recureence to derive this way is
T (n) = 2T (n/2) + O(n).

36 / 37

Solving recurrences

Once we know (or have good intuition) for what the solution of a
recurrence is, we can usually verify the solution by induction.

What should we do when we don’t yet know what to expect?
Well, of course, one can look up many examples of recurrences say on the
internet and that often works.
And if that doesn’t work?
Perhaps the most common approach is to start to unwind the recurrence
to see if it suggests a pattern . The CLRS text calls this the recursion tree
method. (Of course, “seeing this pattern” is somewhat of an art form and
some recurrences are not easy to solve.)

In most cases, if we are only intersted in asymptotic bounds, then we can
assume say that n has some special form such as n = 2k for some k ≥ 0
and that eliminates the concern for handling floors and ceilings.

An easy and common recureence to derive this way is
T (n) = 2T (n/2) + O(n).

36 / 37

The recursion tree for T (n) = 2T (n/2) + cn
38 Chapter 2 Getting Started

cn

cn

…

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

…
(d)

(c)

cn

T(n/2) T(n/2)

(b)

T(n)

(a)

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

Figure 2.5 How to construct a recursion tree for the recurrence T .n/ D 2T .n=2/ C cn.
Part (a) shows T .n/, which progressively expands in (b)–(d) to form the recursion tree. The fully
expanded tree in part (d) has lg n C 1 levels (i.e., it has height lg n, as indicated), and each level
contributes a total cost of cn. The total cost, therefore, is cn lg nC cn, which is ‚.n lg n/.Figure: Figure 2.5 in CLRS; the recursion tree for the reurrence

T (n) = 2T (n/2) + cn
37 / 37

	Week 1

