
CSC373 Term Test ; March 2 Spring, 2020

Name Student No.

Indicate your tutorial time and room.

AIDS ALLOWED: One page (two sides) of handwritten notes
Answer ALL questions on test paper. Use backs of sheets for additional space.

For every question, briefly justify your answer. You can use your knowledge from
lectures, tutorials, the texts, or the assignments set as part of any answer. No

cell phones or smart watches (or any device that can communicate) are allowed.
It is an academic offense to have any such device visible.

REMINDER: You get 20% for any question or subquestion if you state “I do
not know how to answer this question”. You get 10% for any question which you
just leave blank.

Important: Students taking the test from 4-6 must remain in the test room
until 5:20. Students taking the test from 5-7 must arrive by 5:20 but can begin at
5:10.

1. (10 points)

Suppose we are given an algorithm that can multiply two 4× 4 matrices in
` non-scalar multiplications. What is the largest value of ` such that we can
use the 4 × 4 matrix multiplication algorithm so as to design a divide and
conquer algorithm that will be faster than Strassen’s ≈ n2.81 time algorithm?
Explain your answer.

Solution sketch: T (n) =

{
1 if n = 1

`T (n/4) + O(n2), if n > 1

By Master’s Theorem: a = `, b = 4, d = 2 so that T (n) = O(nlog4 7).
We need log4 ` < log2 7 =⇒ 4log4 ` < 4log2 7 =⇒ ` < (22)log2 7 =
2(log2 7)·2 = 72 = 49.

1

Name Student No.

2. (15 points) Suppose we have an array A[1..n] of positive and negative in-
tegers. We want to design a divide and conquer algorithm to determine
whether or not there is a sub-array A[1 ≤ i ≤ j ≤ n] such that

∑
i≤k≤j A[k] ≥

2 ·max` A[`]. If so, the algorithm should return an appropriate pair of indices
i, j satisfying the stated condition; if not, then return “null” Your algorithm
should run in time that is asymptotically less that n2, the time for a naive
brute force search algorithm.

• (5 points)

Explain your algorithm and the high level ideas underlying it.

Solution sketch: Split array A to two roughly equal size arrays A1, A2

and recursively find maximum subarray in each, as well as the maximum
subarray that crosses the two midpoints of A1 and A2. If any of the
arrays satisfies the conditions return relevant indexes, otherwise return
NULL.

• (10 points) Analyze the complexity of your algorithm.

Solution sketch:

T (n) =

{
1 if n = 1

2T (n/2) + O(n), if n > 1

Using Masters Theorem T (n) ∈ O(n log(n))

2

Name Student No.

3. (15 points) The following questions concern Huffman optimal prefix coding.

• (5 points) Provide an optimal Huffman prefix tree for the following set of
symbol occurrence probabilities: Prob[a] = 1/4, P rob[b] = 1/4, P rob[c] =
1/8, P rob[d] = 1/8, P rob[e] = 1/8, P rob[f] = 1/8

Solution sketch:
Sort (in non-decreasing order) symbols according to their probabilities
and apply Huffman prefix-free algorithm as explained in the class.

• (10 points) Suppose we have 4 symbols each of which occurs with prob-
ability strictly less than 1/3. Using a proof by contradiction, show that
in an optimal prefix coding that no symbol can have a 1 bit code word
(i.e., be at depth 1 in a Huffman optimal prefix tree.)

Solution sketch:

First we can show that the optimal tree will have depth 2. The smallest
two symbols must have combined probability more than 1/3 (or else the
sum of probabilities would be less than 1). If we have a symol at depth
1, then the remaining 3 symbols will require depth 2 so that the entire
tree will have depth 3.

3

Name Student No.

4. (15 points) Suppose the Canadian Armed Forces is conducting a training
exercise for n soldiers in an elite unit. Each of soldiers must first climb up
and down a 10 meter rope and then run a kilometer on a track with n lanes.
There is only one rope so only one soldier can be on the rope at any time
whereas it doesn’t matter how many soldiers are on the track. Suppose we
know the time ci > 0 (resp. ri > 0) for soldier i to climb the rope (resp, to
complete a kilometer the run). The goal is to minimize the completion time
when all soldiers have completed the exercise.

• (5 points) Suppose we perform a greedy algorithm by sorting the order
in which the soldiers will climb the rope so that ri + ci ≥ ri+1 + ci+1.
Show that this algorithm will not always produce an optimal schedule.

Solution sketch: If we use the suggested algorithm on a setup with
c1 = 5, c2 = 2, c3 = 1, r1 = 4, r2 = 5, and r3 = 5, then the necessary
time will be more than when we sort by non-increasing order of running
times.

• (10 points) Design a greedy scheduling algorithm so as to produce an
optimal schedule for the order in which the soldiers will climb up and
down the rope. Briefly sketch the outline of a proof showing the opti-
mality of your algorithm.

Solution sketch: Order non-increasingly by running time. Use ex-
change argument to prove optimality of this solution.

4

Name Student No.

5. (15 points) Consider the following variant of the knapsack problem. We are
given a knapsack size bound of B and a set {J1, J2, . . . , Jn} of n input items
where Ji = (si, vi). Each item has a size si ≤ n2 and an arbitrary value vi.
You can assume all arithmetic operations and comparisons take time O(1).
The objective is to compute the value of an optimal solution OPT where
OPT is a multi-set (i.e., elements c an appear more than once in a a multi-
set) such that

∑
i:Ji∈OPT nisi ≤ B and every item Ji occurs ni ∈ {0, 1, 4}

times in OPT ; that is, an item in OPT occurs once or four times (or is not
used in OPT).

Design an optimal dynamic programming algorithm for this knapsack vari-
ant whose time complexity is O(p(n)) for some polynomial p(n) time bound.
What is the time bound of your algorithm?

Solution sketch: M [i, bi] = maximum value obtainable using J1, . . . , Ji
with size limit b.

M ′[i, b] =


0, i = 0

0, b < 0

max{M ′[i− 1, b],M ′[i− 1, b− si] + vi,M
′[i− 1, b− 4si] + 4vi}, otherwise

T (n) ∈ O(nb) for b = n · n2 so T (n) ∈ O(n4).

5

Name Student No.

6. (15 points) You are going on a long trip. You start on the road at mile post
0. Along the way there are n hotels, at mile posts a1 < a2 < . . . < an,
where each ai is measured from the starting point. The only places you are
allowed to stop are at these hotels, but you can choose which of the hotels
you stop at. You must stop at the final hotel (at distance an), which is your
destination.

You would ideally like to travel 100 miles a day, but this may not be pos-
sible (depending on the spacing of the hotels). If you travel x miles during
a day, the penalty for that day is (100 − x)2. You want to plan your trip
so as to minimize the total penalty; that is, the sum, over all travel days, of
the daily penalties. Give an efficient dynamic programming algorithm that
determines the optimal sequence of hotels at which to stop. What is the
time complexity of your algorithm.

Solution sketch: M[i] = the minimum penalty to arrive to hotel i.

M ′[i] =

{
0, i = 0

min{M ′[j], (100− (ai − aj))
2 : j < i ∧ ai − aj ≤ 100}, i > 0

M ′ has n entries and computing each entry is of O(n). Thus, T (n) ∈ O(n2)

6

Name Student No.

7. (15 points)

There is a round robin tennis tournament amongst n players in which each
player plays all the other players once. Thus there are

(
n
2

)
games that need

to be played. If a player wins a game she gets 1 point; a losing player
gets 0. Suppose at the end of the tournament, player i obtains si points.
We want to determine if the vector (s1, s2, . . . , sn) can be the outcome of
the tournament. For example when n = 4, (3,3,0,0) cannot be the outcome
of the tournament while (3,2,1,0) can be an outcome. Note that

∑
i si =

(
n
2

)
.

For some polynomial time bound p(n), design an algorithm that runs in time
O(p(n)) that can determine if a given vector (s1, s2, . . . , sn) can be an out-
come. (You do not have to state the polynomial time bound but give some
indication as to why your algorithm runs in polynomial time.)

Hint: Set up an appropriate flow network with integer capacities and use a
maximum flow algorithm to check if the max flow is

(
n
2

)
.

Solution sketch: Construct a bipartite flow network N = (V,E) with
V = V M ∪V P ∪{s, t} where V M represents matches, V P represents players,
and s and t represent start and terminal nodes respectively. Notice that
|V M | =

(
n
2

)
and |V P | = n, the number of players. For players i 6= j connect

V M
i,j to V P

i and to V P
j each with capacity 1. Connect s to all nodes in

V M with capacity 1. Connect all nodes in V P to t where edge (V P
i , t) has

capacity si. A given outcome is feasible if the max flow in N is
(
n
2

)
.

7

