Closest pair of points in R^{2} : algorithm and run time analysis

CSC373: Algorithm Design, Analysis, and Complexity Sara Rahmati (in collaboration with Allan Borodin)

Closest pair of points (from Kevin Wayne)

```
Closest-Pair(p
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L O(n)
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between
    each point and next 7 neighbors. If any of these
    distances is less than }\delta,\mathrm{ update }\delta\mathrm{ .
    return \delta.
}
```


Closest pair of points

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Master theorem does not directly apply. Need to unroll the recurrence. (Cf. CLRS Exercise 4.4.2).
Q. Can we achieve $O(n \log n)$?
A. Yes. Presort points in two lists, one sorted by x, other by y.
.Each recursive call accepts two sorted lists: one sorted by y the other by x.
. Finding a splitting in x is $O(1)$.
.Computing the y-sorted list in the strip is $O(n)$.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Time complexity analysis

- Goal: prove $T(n) \leq 2 T(n / 2)+O(n \log n) ; T(2)=1 \Longrightarrow T(n) \leq n \log ^{2} n$
- Proof: For simplicity, assume $\mathrm{n}=2^{\mathrm{m}}$ for m a non-negative integer:
- Transform variable n to $\mathrm{m}: n=2^{m} \Longrightarrow \log _{2} n=m, \Longrightarrow \log _{2}(n / 2)=m-1$

$$
\begin{aligned}
& T^{\prime}(m) \leq 2 T^{\prime}(m-1)+O\left(2^{m} \times m\right) \\
& \quad \leq 2^{2} T^{\prime}(m-2)+O\left(2^{m} \times((m-1)+m)\right) \\
& \leq 2^{3} T^{\prime}(m-3)+O\left(2^{m} \times((m-2)+(m-1)+m)\right) \\
& \cdots \\
& \leq
\end{aligned}
$$

- Inverse transform variable m to $\mathrm{n}: \quad T(n) \leq n+O\left(n(\log n \log (2 n) / 2)=O\left(n \log ^{2} n\right)\right.$

