CSC373, Winter/Spring 2020 Assignment 2: Some solution sketches

Due: Thursday, March 5, 2020 4:59PM on MarkUs

You will receive 20% of the points for any (sub)problem for which you write “I do
not know how to answer this question.” You will receive 10% if you leave a question
blank. If instead you submit irrelevant or erroneous answers you will receive 0 points.
You may receive partial credit for the work that is clearly “on the right track.”

You may choose to spend your time looking for solutions on the internet and may
likely succeed in doing so but you probably won’t understand the concepts that way
and will then not do well on the quizzes, midterm and final. So at the very least try
to do the assignment initially without searching the internet. If you obtain a solution
directly from the internet, you must cite the link and explain the solution in your
own words to avoid plagiarizing.

1. (20 pts)

In the inverted class tutorial, you considered the following problem:

Input : Jobs {Ji, Ja, ..., J,} with J; = (p;, v;, d;) where
p; is the processing time, v; is the value, and d; is the deadline of the " job. Assume that
all parameters are positive integers and that d; < dj, for all 1 < k

A valid schedule is one where jobs complete by their deadline, and no two jobs intersect.
(A job can start at exactly the same time as a previous job completes.) The objective is
to maximize the total value of all jobs in the schedule. In the tutorial, we wanted a DP
algorithm that runs in time O(n - max; d;).

Now suppose we want to compute a valid schedule that runs in time O(n? - max; v;).

(a) (10 points) Provide a semantic array A for a DP algorithm such that the optimum
value can be easily found from entries of the array. (You don’t have to worry about a
corresponding optimum solution.)

Solution: This is similar to the second DP for the knapsack problem. Namely, the
semantic array can be T'[7,v] = minimum time required to obtain value v using the
first ¢ jobs. We note that any schedule (including an optimal schedule) of jobs can be
rearranged so that d; < d for all ¢ < k. Note also that the maximum value that can be
possibly be obtained is at most), v; < n-max; v;. So we consider T'[i,v] for 0 <i <n
and 0 < v < n-max; = O(n? max; v;). Hence if we can compute each entry of T'[i,v] in

constant time using previous entries we will obtain the requested time complexity.

(b) (10 points) Provide a recursive algorithm that will compute the entries of A.

Solution This is just like the analogous DP for the knapsack problem.

10f

CSC373, Winter/Spring 2020 Assignment 2: Some solution sketches

2. (20 points)

Consider the following game. The are n boxes and each box i is either empty (and has no
reward) or contains a known reward of $v;. You can assume v; > ve > ... > v,. You are
also told that the i box contains the dollar reward with some probability p; > 0 (and hence
with probability 1 — p;, the box is empty). The rules of the game are the following:

e You are only allowed to open ¢/ < n boxes.

e If you open a box and it has a § reward (i.e., is not empty), then that is your reward
and you cannot open any more boxes.

The goal is to compute a sequence 7(1),7(2),...,7m(¢) that will determine which subset of
boxes to open and the order in which to open these boxes so as to maximize the expectation
of the reward you can receive. One way to solve this problem is to use dynamic program-
ming. Here is an appropriate semantic array:

V'[i,t] = the maximum expected value that can be obtained when opening at most ¢ boxes
where the first box being opened is box i. (Recall, we are assuming v; > vy.... > v,.)

Define a recursive algorithm that will compute V'[i, t] foralli (1 <i <n)andallt (1 <t < /).
Note: The desired maximum expected reward is max;.<;<, V[i,£]. This may also be con-
strued as a hint.

Claim: If you knew which boxes to open, then you should open them in order of decreasing
values. You do not need to prove this claim.

(a) (5 points) What is the expected value in Vi, 1]; that is, you are allowed to open only
one box. This is the base case.

Solution: Vi, 1] = E[p; - v;].
(b) (15 points) What is the recursive definition of V'[i,t| for t > 1?7 Justify briefly

Solution: For ¢ > 1, V[i,{] = E[p;v; + (1 — p;) max;; V[j, ¢ — 1]].

20f

CSC373, Winter/Spring 2020 Assignment 2: Some solution sketches

3. (20 points)

Consider the flow network above with integral capacities as depicted.

(a)

(b)

(10 points) Compute a maximum flow in the network using the Ford Fulkerson method.
Show each iteration. That is, show an augmenting path at the start of each iteration
and then the new flow at the end of the iteration.

(5 points) Identify a min cut. Explain how you found this min cut.

Solution: You can identify a min cut by doing a breadth first search from the source
s in the residual graph of an optimal flow. If we define the cut as a partition (S, V '\ S)
then S is the set of nodes reachable from s.

(5 points) Identify a minimum set of edges E' C E such by raising the capacity of each
edge in e € F', the maximum flow increases by 1 unit. Explain how you found this set
E'.

Solution: Let Gy = (V, Ef) be the residual graph of an optimal solution. We need
to create a path from s to ¢ by changing some edges in G from having zero residual
capacity to capacity 1. So we create an edge wighted cost graph G’ = (V, E') where for
each edge e in G (i.,e., ¢f(e) > 0) we set c¢(e) =. All other edges have cost 1. Then
we find a least cost path in G’. This path identifies the edges whose capacity can be
increased by 1 to create a new augmenting path.

3 of

CSC373, Winter/Spring 2020 Assignment 2: Some solution sketches

4. (20 points)

An orientation of an undirected graph creates a directed graph G’ = (V, E') by giving a di-
rection to each undirected edge e = (u,v); that is, either (u,v) becomes an edge (u,v) € E’
from w to v or it becomes an edge (v,u) € E’ from v to u.

Consider the following graph orientation problem:

Given: An unweighted undirected graph G = (V, E).

Output: An orientation of G so as to minimize the maximum in-degree of any node. That
is, we want to minimize maxoev{_,.(, yep -

(a) (15 points) Describe a method to optimally solve this problem in polynomial time.
Hint: Construct a bipartite graph H whose vertices are the disjoint union of V; and V5
where V) are the edges of G and V5 are the vertices of G. Then convert H to a number
of flow networks.

Solution: We create a flow network (as in the algorithm for computing a maximum
matching in a bipartite graph) with a distinguished source node s connected to nodes
in Vi, all edges in Vi x V5, and edges from V5 to a distinguished target node t. All
edges have capacity 1 except for the edges in V5 x {t}. For each d = 1,2, - |E|, we set
the capacity of edges in Vo x {t} to d and see if we can achieve flow equal to m. The
minimum such d will be the min in-degree possible.

(b) 5 (points) What is the time complexity of your method?

5. (10 points)

Show that the 4-colourability problem is N P complete. That is, given a graph G, the prob-
lem is to decide whether or not GG has a valid colouring using at most 4 colours.

Solution: It is easy to check correctness of each certificate in poly-time, thus, 4-colourability
is in NP. Given a graph G = (V, E), we create a new graph G' = (V' E’) where V' =V U{t}
where t ¢ V, and E' = EU{V x {t}}. Then G has a 3 colouring iff G’ has a 4 colouring.

6. (20 points)

Consider the following decision problem which we will call SATMOSTS3:

Given: A CNF formula F such that every propositional variable x occurs at most 3 times
in F'. That is, each x occurs (that is, either as x or its complement —x) is in at most 3 of
the clauses in F.

Decision: Decide if F' has a satisfying assignment.

Show SATMOST3 is NP hard by showing SAT <, SATMOST3
Hint: Consider the formula (Z; V 22) A (Za V @3) Ao A (Zy—1 V 2) A (T V 21).

Solution: It is enough to consider only when at least one variable occurs in more than 3
clause. The idea is that we will create a new variable x; for the j* occurrence each of these
variables, z. So if say = occurs for the j time in some clause C' , it is replaced by x;. Lets

40f

CSC373, Winter/Spring 2020 Assignment 2: Some solution sketches

say that x occured r times. It remains to add clauses to that all the x; are equivalent. That
is, we add clauses to force x1 = x5 ... = x,. This is quivalent to 1 — x5 ... 2, — x; which
in turn is the conjection of clauses where we replacce y — z by (—y V 2).

50f

