
CSC373S Problem Set 2 Spring, 2013

Due: March 1, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do
your own work (but see below). Similar questions will appear on the second term test.
You may consult with others concerning the general approach for solving problems on
assignments, but you must write up all solutions entirely on your own. Anything else
is plagiarism, and is subject to the University’s Code of Behavior. You will receive 1/5
points for any (non bonus) question/subquestion for which you say “I do not know how
to answer this question”. You will receive .5/5 points if you just leave the question blank.
Advice: Do NOT spend an excessive amount of time on any question and especially not on
a bonus question. If you wish to spend “free time” thinking about (say) bonus questions
that is fine but you should not sacrifice time needed for other courses.

1. (15 points)

Consider a flow network F = (G, s, t, c) with integral capacities that also has a
cost function p : E → N associated with the edges. The interpretation of the cost
function p is that p(e) is the (non-negative) cost to increase the capacity of edge e
by one unit.

Suppose that we have already computed an optimal flow f for the network F . Now
suppose that you want to increase this max flow f by one unit by increasing the
capacity of some edges. Our goal is to do this at the least cost.

Describe a method for optimally determining which edge capacities to increase.
Your method should run in time that is asymptotically better than O(mn).

2. (15 points) Consider the following makespan problem: An input I = {I1, . . . , In}
where each job Ij = (pj, Sj) with pj the processing time or load of job Ij (as in the
makespan problem previously considered in lecture 5) and Sj ⊆ {1, 2, . . .m} is the
set of allowable machines on which Ij can be processed. This is called the “restricted
machines model”. Since this problem extends the “identical machines model” (as
in lecture 5), it is also NP hard.

In what follows, we will only consider the case when all processing times/loads
pj = 1. The goal is again to minimize the makespan; that is, minimize the maximum
time/load on any machine.

• (5 points) Show that the “natural online greedy algorithm” (i.e. consider each
job in the order given and schedule it on a least loaded machine) is not an
optimal algorithm.

• (bonus) What is the worst approximation you can achieve for the natural online
greedy algorithm? Can you construct any greedy algorithm which achieves a
constant approximation ratio (independent of n and m)?
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• (10 points) Given an integer k, show how you can efficiently determine whether
or not the makespan is at most k by reducing the problem to a max flow
problem.

3. Show how to polynomial time reduce the 3-colouring search problem to the 3-
colouring decision problem. Hint: Introduce three new nodes to represent the three
colours and then try to colour one node at a time.

4. Show that the following decision problems are NP-complete. To establish the NP
hardness, you can use a polynomial time transformation from any problem in the
tree of transformations on slide 14 of lecture 15.

(a) Half independent set (HIS) where
HIS = {G|G = (V,E) and G has an independent set of size at least d|V |/2e }.

(b) Unweighted Job Scheduling (UJS) where
UJS = {(I, k)|I = {J1, . . . , Jn} is a set of n jobs for which at least k can be
scheduled within their deadline without intersection except at the end points}.
Here job Ji = (ri, di, pi) is described by its release time ri, deadline di and
processing time pi. Such a job must be scheduled to start at some time ti such
that ri ≤ ti ≤ di − pi so that it completes by its deadline di.

Hint: Use the subset sum problem.
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