
CSC 373: Algorithm Design and Analysis
Lecture 9

Allan Borodin

January 28, 2013

1 / 16

Lecture 9: Announcements and Outline

Announcements

Problem set 1 due this Friday.

Term Test 1 will be held next Monday, Feb 4 in the tutorials.

Two announcements to follow about choosing a CS Focus and
applying to Graduate School.

Today’s outline

Start flow networks

Ford Fulkerson and augmenting paths

Ford Fulkerson as a local search algorithm

2 / 16

Choosing a focus in CS

THURSDAY, FEBRUARY 7, 2013
11:00 am—1:00pm

ROOM: BA1180

HUMAN-COMPUTER INTERACTION,

COMPUTER SYSTEMS, GAME DESIGN...

So many choices!

Find out what each Focus is about— and where it might take you.

Get your questions answered by faculty experts in each Focus area.

For questions, contact ugliaison@cs.toronto.edu.

CHOOSE YOUR OWN ADVENTURE:
UNDERSTANDING THE CONCENTRATIONS FOCUSES

3 / 16

Thinking about Graduate School?

TUESDAY, FEBRUARY 12, 2013
11:00 am—1:00pm

ROOM: BA2135

THINKING ABOUT GRAD SCHOOL?

Get some answers!

 What is grad school is like?

 How do I apply?

 How can I prepare as an undergraduate student?

 How can I give myself the best edge—

and get into the school of my dreams!

For questions, contact ugliaison@cs.toronto.edu.

GRAD SCHOOL INFO SESSION

4 / 16

Flow networks

I will be following our old CSC364 lecture notes for the basic
definitions and results concerning the computation of max flows.

We follow the convention of allowing negative flows. While intuitively
this may not seem so natural, it does simplify the development.

The DPV and KT texts use the perhaps more standard convention of
just having non-negative flows.

Definition

A flow network (more suggestive to say a capacity network) is a tuple
F = (G , s, t, c) where

G = (V ,E) is a “bidirectional graph”

the source s and the terminal t are nodes in V

the capacity c : E → R≥0

5 / 16

What is a flow?

A flow is a function f : E → R satisfying the following properties:

1 Capacity constraint: for all (u, v) ∈ E ,

f (u, v) ≤ c(u, v)

2 Skew symmetry: for all (u, v) ∈ E ,

f (u, v) = −f (v , u)

3 Flow conservation: for all nodes u (except for s and t),∑
v∈N(u)

f (u, v) = 0

Note

Condition 3 is the “flow in = flow out” constraint if we were using the
convention of only having non-negative flows.

6 / 16

An example

a c

s

b d

t

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

The notation x/y on an edge (u, v) means

x is the flow, i.e. x = f (u, v)

y is the capacity, i.e. x = c(u, v)

7 / 16

An example of flow conservation

a c

s

b d

t

a

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

For node a: f (a, s) + f (a, b) + f (a, c) = −13 + (−1) + 14 = 0

For node c :

f (c , a) + f (c , b) + f (c, d) + f (c , t) = −14 + 4 + (−7) + 17 = 0

8 / 16

An example of flow conservation

a c

s

b d

t

c

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

For node a: f (a, s) + f (a, b) + f (a, c) = −13 + (−1) + 14 = 0
For node c :

f (c , a) + f (c , b) + f (c, d) + f (c , t) = −14 + 4 + (−7) + 17 = 0

8 / 16

The max flow problem

The max flow problem

Given a network flow, the goal is to find a valid flow that maximizes the
flow out of the source node s.

As we will see this is also equivalent to maximizing the flow in to the
terminal node t. (This should not be surprising as flow conservation
dictates that no flow is being stored in the other nodes.)

We let val(f) denote the flow out of the source s for a given flow f .

We will study the Ford-Fulkerson augmenting path scheme for
computing an optimal flow.

I am calling it a “scheme” as there are many ways to instantiate this
scheme although I dont view it as a general “paradigm” in the way I
view (say) greedy and DP algorithms.

9 / 16

So why study Ford-Fulkerson?

Why do we study the Ford-Fulkerson scheme if it is not a very generic
algorithmic approach?

As in DPV text, max flow problem can also be represented as a linear
program (LP) and all LPs can be solved in polynomial time.

I view Ford-Fulkerson and augmenting paths as an important example
of a local search algorithm although unlike most local search
algorithms we obtain an optimal solution.

The topic of max flow (and various generalizations) is important
because of its immediate application and many applications of max
flow type problems to other problems (e.g. max bipartite matching).

I That is many problems can be polynomial time transformed/reduced to
max flow (or one of its generalizations).

I One might refer to all these applications as “flow based methods”.

10 / 16

A flow f and its residual graph

Given any flow f for a flow network F = (G , s, t, c), we define the
residual graph Gf = (V ,Ef), where

I V is the set of vertices of the original flow network F
I Ef is the set of all edges e having positive residual capacity

cf (e) = c(e)− f (e) > 0.

Note that c(e)− f (e) ≥ 0 for all edges by the capacity constraint.

Note

With our convention of negative flows, even a zero capacity edge (in G)
can have residual capacity.

The basic concept underlying the Ford-Fulkerson algorithm is an
augmenting path which is an s-t path in Gf .

I Such a path can be used to augment the current flow f to derive a
better flow f ′.

11 / 16

An example of a residual graph

a c

s

b d

t

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

The previous network flow

a c

s

b d

t

4

11

4
4

11 3

7

5

14

4

7

5

The residual graph

12 / 16

The residual capacity of an augmenting path

Given an augmenting path π in Gf , we define its residual capacity
cf (π) to be the

min{c(e)− cf (e) | e ∈ π}

Note: the residual capacity of an augmenting path is itself is greater
than 0 since every edge in the path has positive residual capacity.

Question: How would we compute an augmenting path of maximum
residual capacity?

13 / 16

Using an augmenting path to improve the flow

We can think of an augmenting path as defining a flow fπ (in the
“residual network”):

fπ(u, v) =

cf (π) if (u, v) ∈ π
−cf (π) if (v , u) ∈ π
0 otherwise

Claim

f ′ = f + fπ is a flow in F and val(f ′) > val(f)

14 / 16

Deriving a better flow using an augmenting path

a c

s

b d

t

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

The original network flow

a c

s

b d

t

4

11

4
4

11 3

7

5

14

4

7

5

An augmenting path π with cf (π) = 4

a c

s

b d

t

17/20

8/13

14/14

11/15

0/8

21/22

4/4

7/73/10 −3/4

The updated flow whose value = 25

a c

s

b d

t

4

11

7 7

3

5

14

8

4

7

1

Updated res. graph with no aug. path

15 / 16

Deriving a better flow using an augmenting path

a c

s

b d

t

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

The original network flow

a c

s

b d

t

4

11

4
4

11 3

7

5

14

4

7

5

An augmenting path π with cf (π) = 4

a c

s

b d

t

17/20

8/13

14/14

11/15

0/8

21/22

4/4

7/73/10 −3/4

The updated flow whose value = 25

a c

s

b d

t

4

11

7 7

3

5

14

8

4

7

1

Updated res. graph with no aug. path

15 / 16

Deriving a better flow using an augmenting path

a c

s

b d

t

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

The original network flow

a c

s

b d

t

4

11

4
4

11 3

7

5

14

4

7

5

An augmenting path π with cf (π) = 4

a c

s

b d

t

17/20

8/13

14/14

11/15

0/8

21/22

4/4

7/73/10 −3/4

The updated flow whose value = 25

a c

s

b d

t

4

11

7 7

3

5

14

8

4

7

1

Updated res. graph with no aug. path
15 / 16

The Ford-Fulkerson scheme

The Ford-Fulkerson scheme

1: /* Initialize */
2: f := 0
3: Gf := G
4: while there is an augmenting path π in Gf do
5: f := f + fπ /* Note this also changes Gf */
6: end while

Note

I call this a “scheme” rather than an algorithm since we haven’t said how
one chooses an augmenting path (as there can be many such paths)

16 / 16

