
CSC 373: Algorithm Design and Analysis
Lecture 8

Allan Borodin

January 23, 2013

1 / 19

Lecture 8: Announcements and Outline

Announcements

No lecture (or tutorial) this Friday.

Lecture and tutorials as usual on Monday.

First Problem Set is now complete and due Friday, February 1.

First Term Test in tutorials on Monday, February 4.

Today’s outline

Reflections on the DP algorithm for the least cost paths problem

The all pairs least cost problem and an alternative DP

The chain matrix product problem

The edit distance problem

2 / 19

Review: A DP with a somewhat different style

We considered the single source least cost paths problem which is
efficiently solved by Dijkstra’s greedy algorithm for graphs in which all
edge costs are non-negative.

The least cost paths problem is still well defined as long as there are
no negative cycles; that is, the least cost path is a simple path.

I There can also be non simple least cost paths when there are zero cost
cycles but there will always be a simple path having the least cost and
hence we can restrict attention to such simple paths.

Basically the same algorithm can be used to compute the least cost
paths from all nodes to a single terminal node t (again assuming no
negative cycles).

Given the Bellman Ford algorithm for shortest paths, it is not difficult
to detect when a directed graph has a negative cost cycle (and find
such a cycle if it exists). See, for example, Section 6.10 of KT.

3 / 19

Single source least cost paths for graphs with no
negative cycles

Following the DP paradigm, we consider the nature of an optimal
solution and how it is composed of optimal solutions to
“subproblems”.
Consider an optimal simple path P from source s to some node v .

I This path could be just an edge.
I But if the path P has length greater than 1, then there is some node u

which immediately proceeds v in P. If P is an optimal path to v , then
the path leading to u must also be an optimal path.

s v

u

P

4 / 19

Single source least cost paths for graphs with no
negative cycles

s v

u

P

This leads to the following semantic array:

C [i , v] = the minimum cost of a simple path with path length at most i
from source s to v . (If there is no such path then this cost is ∞.)

The desired answer is then the single dimensional array derived by
setting i = n − 1. (Any simple path has path length at most n − 1.)

5 / 19

How to construct the computational array?

We can construct C ′[i , v] from C ′[i − 1, . . .] as follows:

s v

u

C ′[i − 1, v]

C ′[i − 1, u]

c(u, v)

Let C ′[i , v] be the minimum value among
I C ′[i − 1, v]
I C ′[i − 1, u] + c(u, v) for all (u, v) ∈ E .

6 / 19

Corresponding computational array

The computational array is defined as:

C ′[i , v] =


0 if i = 0 and v = s

∞ if i = 0 and v 6= s

min{A,B} otherwise

A = C ′[i − 1, v]

B = min
{
C ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
Why is this slightly different from before?

I Namely, showing the equivalence between the semantic and
computationally defined arrays is not an induction on the indices of the
input items in the solution.

I But it is based on some other parameter (i.e. the path length) of the
solution.

Time complexity: n2 entries × O(n) per entry = O(n3) in total.

7 / 19

Computing maximum cost path using the same DP?

To define this problem properly we want to say “maximum cost simple path”
since cycles will add to the cost of a path.
(For least cost we did not have to specify that the path is simple once we
assumed no negative cycles.)
Suppose we just replace min by max in the least cost DP. Namely,

M[i , v] = the maximum cost of a simple path with path length at most i from
source s to v . (If there is no such path then this cost is −∞.)

The corresponding computational array would be

M ′[i , v] =


0 if i = 0 and v = s

−∞ if i = 0 and v 6= s

max{A,B} otherwise

A = M ′[i − 1, v]

B = max
{
M ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
Is this correct?

8 / 19

What goes wrong?

The problem calls for a maximum simple path but the recursion

B = max
{
M ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
does not guarantee that the path through u will be a simple path as v
might occur in the path to u. Algorithm would work for a DAG.

In fact, determining the maximum cost of a simple path is NP-hard.
I A special case of this problem is the Hamiltonian path problem: does a

graph G = (V ,E) have a simple path of length |V | − 1?
I The Hamiltonian path problem is a variant of the “notorious”

(NP-hard) traveling salesman problem (TSP).

See Section 6.6 of DPV for how to use DP to reduce the complexity
from the naive O(n!) to O(n22n).

Stirling’s approximation

n! ≈
√

2πn
(
n
e

)n
9 / 19

The all pairs least cost problem

We now wish to compute the least cost path for all pairs (u, v) in an
edge weighted directed graph (with no negative cycles).

We can repeat the single source DP for each possible source node:
complexity O(n4)

We can reduce the complexity to O(n3logn) using the DP based on
the semantic array

E [j , u, v] = cost of shortest path of path length at most 2j from u to v .

What is corresponding computational array?

10 / 19

Another DP for all pairs (DPV section 6.6)

Let’s assume (without loss of generality) that V = {1, 2, . . . , n}.
We now define the semantic array

G [k , u, v] = the least cost of a (simple) path π from u to v such that the
internal nodes in the path π are in the subset {1, 2, . . . , k}.

The computational array is

G ′[0, u, v] =


0 if u = v

c(u, v) if (u, v) is an edge

∞ otherwise.

G ′[k + 1, u, v] = min{A,B}

where A = G ′[k, u, v] and B = G ′[k, u, k + 1] + G ′[k , k + 1, v].

Like the recursion for the previous array E ′[j , u, v], the recursion here
uses two recursive calls for each entry.

Time complexity: n3 entries × O(1) per entry = O(n3) in total.

11 / 19

A similar DP (using 2 recursive calls)

The chain matrix product problem (DPV section 6.5

We are given n matrices (say over some field) M1, . . . ,Mn with Mi

having dimension di−1 × di .

Goal: compute the matrix product

M1 ·M2 · . . . ·Mn

using a given subroutine for computing a single matrix product A · B.

We recall that matrix multiplication is associative; that is,

(A · B) · C = A · (B · C).

But the number of operations for computing A · B · C generally
depends on the order in which the pairwise multiplications are carried
out.

12 / 19

The matrix chain product problem continued

Let us assume that we are using classical matrix multiplication and
say that the scalar complexity for a (p × q) times (q × r) matrix
multilication is pqr .

For example say the dimensions of A, B and C are (respectively)
5× 10, 10× 100 and 100× 50.

Then using (A · B) · C costs 5000 + 25000 = 30000 scalar operations
whereas A · (B · C) costs 50000 + 2500 = 52500 scalar ops.

Note: For this problem the input is these dimensions and not the
actual matrix entries.

13 / 19

Parse tree for the product chain

The matrix product problem then is to determine the parse tree that
describes the order of pairwise products.

At the leaves of this parse tree are the individual matrices and each
internal node represents a pairwise matrix multiplication.

Once we think of this parse tree, the DP is reasonably suggestive:

The root of the optimal tree is the last pairwise multiplication and the
subtrees are subproblems that must must be computed optimally.

14 / 19

The DP array for the matrix chain product problem

The semantic array:

C [i , j] = the cost of an optimal parse of Mi · . . . ·Mj for 1 ≤ i ≤ j ≤ n.

The recursive computationally array:

C ′[i , j] =

{
0 if i = j

min
{
C ′[i , k] + C ′[k + 1, j] + di−1dkdj : i ≤ k < j

}
if i < j

This same style DP algorithm (called DP over intervals) is also used
in the RNA folding problem (in Section 6.5 of KT) as well as in
computing optimal binary search trees (see section 15.5 in CLRS).

Essentially in all these cases we are computing an optimal parse tree.

15 / 19

The sequence alignment (edit distance) problem

The edit distance problem

Given two strings X = x1x2 . . . xm and Y = y1y2 . . . yn over some
finite alphabet S .

Goal: find the best way to “match” these two strings.

Variants of this problem occur often in bio-informatics as well as in
spell checking.

Sometimes this is cast as a maximization problem.

We will view it as a minimization problem by defining different
distance measures and matching symbols so as to minimize this
distance.

16 / 19

A simple distance measure

Suppose we can delete symbols and match symbols.

We can have a cost d(a) to delete a symbol a in S , and a cost
m(a, b) to match symbol a with symbol b (where we would normally
assume m(a, a) = 0).

As in any DP we consider an optimal solution and let’s consider
whether or not we will match the rightmost symbols of X and Y or
delete a symbol.

17 / 19

The DP arrays

The semantic array:

E [i , j] = the cost of an optimal match of x1 . . . xi and y1 . . . yj .

The computational array:

E ′[i , j] =


0 if i = j = 0

d(yj) + E ′[i , j − 1] if i = 0 and j > 0

d(xi) + E ′[i − 1, j] if i > 0 and j = 0

min{A,B,C} otherwise

where A = m(xi , yj) + E ′[i − 1, j − 1], B = d(xi) + E ′[i − 1, j], and
C = d(yj) + E ′[i , j − 1].

As a simple variation of edit distance we consider the maximization problem where
each “match” of “compatible” a and b has profit 1 (resp. v(a, b)) and all
deletions and mismatches have 0 profit.

This is a special case of unweighted (resp. weighted) bipartite graph matching
where edges cannot cross.

18 / 19

DP concluding remarks

In DP algorithms one usually has to first generalize the problem (as
we did more or less to some extent for all problems considered).
Sometimes this generalization is not at all obvious.

What is the difference between divide and conquer and DP?

I In divide and conquer the recursion tree never encounters a subproblem
more than once.

I In DP, we need memoization (or an iterative implementation) as a given
subproblem can be encountered many times leading to exponential time
complexity if done without memoization.

I See also the comment on page 169 of DPV as to why in some cases
memoization pays off since we do not necessaily have to compute every
possible subproblem. (Recall also the comment by Dai Tri Man Le in
Lecture 6.)

19 / 19

