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Lecture 7: Outline

A second pseudo polynomial time algorithm for the knapsack problem

Turning a pseudo polynomial time algorithm into a fully polynomial
time approximation scheme (FPTAS)

DP for the least cost paths problem
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Review of DP for knapsack problem from last lecture

The Knapsack problem

In the knapsack problem we are given a set of n items I1, . . . , In and a size
bound B where where each item Ij = (sj , vj) with sj being the size of the
item and vj the value.
A feasible set is now a subset of items S such that the sum of the sizes of
items in S is at most the bound B.
Goal: Find a feasible set S maximizing the sum of the values of items in S .

Often one uses wj for the weight of the item rather than sj but I am avoiding
that due to our earlier use of wj to denote the weight or profit of an interval
in the WISP.
In general we can allow real valued parameters but in some algorithms need
to restrict attention to integral parameters. But by scaling inputs this is not a
significant restriction.
This is known to be an NP hard problem but as we shall see it is only
“weakly NP hard”. However, It remains an NP hard problem even when
vj = sj for all j .
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The first DP algorithm for the knapsack problem

Define

V [i , b] = the maximum profit possible using only the first i items
and not exceeding the bound b.

The corresponding computational array is :

V ′[i , b] =

{
0 if i = 0 or b = 0

max{C ,D} if si ≤ b

where
C = V ′[i − 1, b] and D = V ′[i − 1, b − si ] + vi .

This algorithm has running time O(nB) and is pseudo polynomial
time.

Question: why is it not polynomial time?
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A second DP algorithm for the knapsack problem

In the first algorithm, if the sizes (or the bound B) are small (i.e.
B = poly(n)) then the algorithm runs in polynomial time.

What if the values {vi} are integral and small?

Consider the following semantic array

W [i , v ] =


minimum size required to obtain at least profit v using

a subset of the items {I1, . . . , Ii} if possible

∞ otherwise

The desired optimum value is max{v : W [n, v ] is at most B}.
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Corresponding computational array

The corresponding computational array is :

W [i , v ] =


∞ if i = 0 and v > 0

0 if i ≤ 0 and v ≤ 0

min{C ,D} otherwise.

where
C = W [i − 1, v ] and D = W [i − 1, v − vi ] + si .

This DP remains pseudo polynomial time but now the complexity is
O(nV ) where V = v1 + v2 + . . .+ vn.
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An FPTAS for the knapsack problem

This algorithm can be used as the basis for an efficient approximation
algorithm for all input instances.

The basic idea is relatively simple:
I The high order bits/digits of the values can determine an approximate

solution (disregarding low order bits after rounding up).
I The fewer high order bits we use, the faster the algorithm but the

worse the approximation.
I The goal is to scale the values in terms of a parameter ε so that a

(1 + ε) approximation is obtained with time complexity polynomial in n
and (1/ε).

I The details are given in the DPV text (section 9.2.4) or the KT text
(section 11.8).

I Namely, KT set v̂i = d vin
εvmax
e where vmax = maxj{vj}. DPV use the

floor b c.
I The running time is O(n3/ε).
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Looking ahead toward discussion of NP complete
problems

In term of computing optimal solutions, all “NP complete
optimization problems” (i.e. optimization problems corresponding to
NP complete decision problems) can be viewed (up to polynomial
time) as a single class of problems.

But in the world of approximation algorithms, this single class splits
into many classes of approximation guarantees. Up to our believed
complexity assumptions, we next discuss these possibilities.

Definition

1 An FPTAS (Fully Polynomial Time Approximation Scheme) algorithm is one
that is polynomial time in the encoding of the input and 1

ε .

2 A PTAS (Polynomial Time Approximation Scheme) algorithm is one that
that is polynomial in the encoding of the algorithm but can have any
complexity in terms of 1

ε .
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Different approximation possibilities for NP
complete optimization

Given widely believed complexity claims

1 An FPTAS
I e.g. the knapsack problem

2 A PTAS but no FPTAS
I e.g. makespan (when the number of machines m is not fixed but rather

is a a parameter of the problem.

3 Having a constant c > 1 approximation but no PTAS
I e.g. JISP

4 An Θ(log n) approximation and no constant approximation
I e.g. set cover Hn essentially tight.

5 No n1−ε approximation for any ε > 0
I e.g. graph colouring and MIS for arbitrary graphs

Here n stands for some input size parameter (e.g. size of the universe for set

cover and number of nodes in the graph for colouring and MIS).
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A DP with a sightly different style

Let’s consider the single source least cost paths problem which is
efficiently solved by Dijkstra’s greedy algorithm for graphs in which all
edge costs are non-negative.

The least cost paths problem is still well defined as long as there are
no negative cycles; that is, the least cost path is a simple path.

The text presents the Bellman-Ford algorithm in Chapter 4 but it can
be (and I think is best ) presented as a DP algorithm and we will
present it within this context.

The algorithm can also be thought of as an adaptive greedy algorithm
if we consider the edges as the input items. But still I think the DP
point of view is what leads us to this algorithm.

10 / 1



Single source least cost paths for graphs with no
negative cycles

Following the DP paradigm, we consider the nature of an optimal
solution and how it is composed of optimal solutions to
“subproblems”.
Consider an optimal simple path P from source s to some node v .

I This path could be just an edge.
I But if the path P has length greater than 1, then there is some node u

which immediately proceeds v in P. If P is an optimal path to v , then
the path leading to u must also be an optimal path.

s v

u

P
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Single source least cost paths for graphs with no
negative cycles

s v

u

P

This leads to the following semantic array:

C [i , v ] = the minimum cost of a simple path with path length at most i
from source s to v . (If there is no such path then this cost is ∞.)

The desired answer is then the single dimensional array derived by
setting i = n − 1. (Any simple path has path length at most n − 1.)
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How to construct the computational array?

We can construct C ′[i , v ] from C ′[i − 1, . . .] as follows:

s v

u

C ′[i − 1, v ]

C ′[i − 1, u]

c(u, v)

Let C ′[i , v ] be the minimum value among
I C ′[i − 1, v ]
I C ′[i − 1, u] + c(u, v) for all (u, v) ∈ E .
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Corresponding computational array

The computational array is defined as:

C ′[i , v ] =


0 if i = 0 and v = s

∞ if i = 0 and v 6= s

min{A,B} otherwise

A = C ′[i − 1, v ]

B = min
{
C ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
Why is this slightly different from before?

I Namely, showing the equivalence between the semantic and
computationally defined arrays is not an induction on the indices of the
input items in the solution.

I But it is based on some other parameter (i.e. the path length) of the
solution.

Time complexity: n2 entries × O(n) per entry = O(n3) in total.
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