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Lecture 6: Outline

Start dynamic programming (DP)

The weighted interval selection problem (WISP)

The knapsack problem
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Dynamic programming

Dynamic programming (DP) began as and remains a very general
algorithmic approach for solving optimization problems.

Its usage now goes beyond that but still optimization is the main use.

We start with our first problem, namely interval selection but now we
consider the weighted version.

The weighted interval selection problem (WISP)

I Interval Ij starts at sj , finishes at fj , and has weight (or profit) wj .

I Two jobs are compatible if they don’t overlap. (Say we allow fi = sj)

I Goal: find a mutually compatible set of intervals S so as to maximize the
sum of interval weights in the chosen set.

Can we use a greedy algorithm?
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Why not use greedy for WISP?

All the possible ways of ordering the input items that we can think of
will not only fail to be optimal but can produce arbitrarily bad
solutions.

Some possible orderings: by non increasing weight, by non increasing
weight/interval length.

Moreover, for a general greedy formalization it can be proven that no
greedy algorithm can provide a good solution (in the worst case).

There are some extensions to a greedy approach which do allow
constant approximations (i.e. by allowing revocable acceptances) and
even optimality (i.e. by a local ratio/primal dual algorithm that uses a
reverse delete phase).
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The DP approach

Let’s consider an optimal solution and once again assume that the
intervals have been sorted by non-decreasing finishing time.

Then in an optimal solution OPT , either the last interval In was
selected or it was not.

I If not, then we must be using an optimal solution for the first n − 1
intervals.

I If In is in OPT then no interval in OPT after time sn.

I Furthermore (and this is the essential aspect of DP), the intervals
ending by sn must be chosen optimally.

Note

Once again we will define the problem so that an interval can start
when another one ends.

We can easily modify things if we do not want to allow an interval to
start at precisely the time another ends.

5 / 14



The value/profit of an optimal solution

The previous observation leads us to compute the entries (for
i = 1, . . . , n) in the following “semantic array”

V [i ] = max profit obtainable by a set of intervals which are a subset
of the first i intervals {I1, . . . , Ii}

The optimal value then is V [n].

We can also define V [0] = 0.

To compute the entries of this array, it is helpful to define

pred(i) = the largest index j such that fj ≤ si

(If we allowed a job to start where another ended
we would then have fj < si .)
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Recursively computing the V [i ]

V ′[0] = 0

V ′[i ] = max{A,B} for i > 1, where

A = V ′[i − 1] and B = V ′[pred(i)] + wi .

Here B (resp. A) corresponds to the case that the ith interval is used
(resp. not used) in the optimum solution for the first i intervals.

We can arbitrarily assume that we take the solution corresponding to
case A when A = B.

Claim

V [i ] = V ′[i ] for all i = 1, 2, . . . , n.
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Iterative vs recursive implementation

We can clearly compute the entries of V ′[i ] iteratively for
i = 0, 1, . . . , n. Time bound is O(n log n) for sorting and for
computing pred[i] values.

What if we use a recursive program directly following the definition of
V ′?

I Suppose for all i = 1, 2, . . . , n− 1, interval Ii overlaps Ii+1 and no other
Ij for j > i + 1.

I This leads to the complexity recurrence

T [n] = T [n − 1] + T [n − 2]

whose solution (recall Fibonacci sequences) is exponential in n.

Memoization avoids this problem. In some sense, memoization is a
defining characteristic (say verses divide and conquer) of DP
algorithms.
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Why two arrays V and V’?

The semantic array is defined to say what we are trying to compute.

The recursively defined computational array is essentially a high level
code for how to compute the entries of the semantic array.

The creative aspect of DP is coming up with an appropriate semantic
array that has to provide us with enough information to obtain the
desired result as well as being easy to compute.

And although it often seems tedious, we need a proof that V = V ′.
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Computing an optimal solution and not just the
optimal value

So far we only computed the value of an optimal solution (for WISP)
but we can easily adapt the DP solution to compute the solution as
well.

While there are somewhat more efficient ways to do this, the
conceptually simplest thing to do is to maintain an array, say S , where
S [i ] contains the partial solution corresponding to the value V [i ].

It should be clear from the recursion defining V ′ how to do this.

S ′[i ] =


∅ if i = 0

S ′[i − 1] if V ′[i ] = V ′[i − 1]

S ′[pred(i)] ∪ {i} otherwise.
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A comment on efficient implementations of DP

Dai Tri Man Le makes the following observation on implementing a DP
algorithm:

One problem with using DP in practice is the memory issue.
When the program uses too much memory, it’s no longer fast.
That’s why sometimes one uses recursion instead of DP,
although the worst cases can be terrible. Recently I was able to
improve some worst case of an algorithm used in industry from
24 hours to 5 mins using memoization. I didn’t even need to
memorize everything, just the most recently computed results,
and it’s already sufficient to see the improvement. It’s also
interesting that when I didn’t restrict the size of the look up
(hash) table as much so that it can memoize more things, the
algorithm became slower. So a lot of tuning was needed for the
code to perform well.
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The Knapsack problem

In the knapsack problem we are given a set of n items I1, . . . , In and a
size bound B where where each item Ij = (sj , vj) with sj being the
size of the item and vj the value.

A feasible set is now a subset of items S such that the sum of the
sizes of items in S is at most the bound B.

Goal: Find a feasible set S that maximizes the sum of the values of
items in S .

Often one uses wj for the weight of the item rather than sj but I am
avoiding that due to our earlier use of wj to denote the weight or
profit of an interval in the WISP.

In general we can allow real valued parameters but in some algorithms
need to restrict attention to integral parameters. But by scaling
inputs this is not a significant restriction.

This is known to be an NP hard problem but as we shall see it is only
“weakly NP hard”. However, it remains an NP hard problem even
when vj = sj for all j .

12 / 14



A first attempt

Here is a plausible DP approach. Lets assume all sizes are integral.
Suppose we consider an optimal solution and consider the last item
placed in the knapsack.

Then after placing that item in the knapsack (say having weight s),
we have reduced the available space to B − s.

So it seems that we need to have a semantic array

V [b] = max profit/value obtainable within size bound b for 0 ≤ b ≤ B.

The recursive array

V ′[b] =

{
0 for b ≤ 0

maxj
{

V ′[b − s(j)] + v(j) : j = 1, 2, . . . , n
}

for b > 0

Does this work and if not why not?
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A correct approach

The previous approach did not work because it allows using an item
more than once.

Instead we can use

V [i , b] = the maximum profit possible using only the first i items
and not exceeding the bound b.

The corresponding computational array is :

V ′[i , b] =

{
0 if i = 0 or b = 0

max{C ,D} if si ≤ b

where
C = V ′[i − 1, b] and D = V ′[i − 1, b − si ] + vi .
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