
CSC 373: Algorithm Design and Analysis
Lecture 5

Allan Borodin

January 16, 2013

Some pictures are from Jeff Erickson’s lecture notes.

1 / 17

Lecture 5: Announcements and Outline

Announcements
1 I will now provide the password for Allan Jepson’s lecture notes.
2 If you have any intention of applying for a USRA, I believe the deadline

in this Friday. This is worth doing!
3 There is a lecture this Friday and then a tutorial on Monday

Outline for today
1 Finish up Huffman coding
2 Greedy algorithms for the makespan problem
3 Reviewing the greedy algorithm paradigm

2 / 17

Review: Prefix binary codes as binary trees

Such an encoding is equivalent to a full ordered binary tree T ; that is,
a rooted binary tree where

I Every non leaf has exactly two children
I With the left edge say labeled 0 and the right edge labeled 1
I With every leaf labeled by a symbol in Γ

Then the labels along the path to a leaf define the string encoding
the symbol at that leaf. The goal is to create such a tree T so as to
minimize

cost(T) =
∑

i

fi · (depth of si in T)

Equivalently we are minimizing the expected symbol length, namely

Es∈Γ[|σ(s)|] =
∑

i

pi · (depth of si in T)

where pi = fi∑
i fi

is the probability of si .

The intuitive idea is to greedily combine the two lowest frequency
symbols s1 and s2 to create a new symbol with frequency f1 + f2.

3 / 17

An example of Huffman coding in DPV

154 Algorithms

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets.

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

for our toy example, where (under the codes of Figure 5.10) the total size of the binary string
drops to 213 megabits, a 17% improvement.

In general, how do we find the optimal coding tree, given the frequencies f1, f2, . . . , fn of
n symbols? To make the problem precise, we want a tree whose leaves each correspond to a
symbol and which minimizes the overall length of the encoding,

cost of tree =
n∑

i=1

fi · (depth of ith symbol in tree)

(the number of bits required for a symbol is exactly its depth in the tree).
There is another way to write this cost function that is very helpful. Although we are only

given frequencies for the leaves, we can define the frequency of any internal node to be the
sum of the frequencies of its descendant leaves; this is, after all, the number of times the
internal node is visited during encoding or decoding. During the encoding process, each time
we move down the tree, one bit gets output for every nonroot node through which we pass. So
the total cost—the total number of bits which are output—can also be expressed thus:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.
The first formulation of the cost function tells us that the two symbols with the smallest

frequencies must be at the bottom of the optimal tree, as children of the lowest internal node
(this internal node has two children since the tree is full). Otherwise, swapping these two
symbols with whatever is lowest in the tree would improve the encoding.
This suggests that we start constructing the tree greedily: find the two symbols with the

smallest frequencies, say i and j, and make them children of a new node, which then has
frequency fi + fj. To keep the notation simple, let’s just assume these are f1 and f2. By the
second formulation of the cost function, any tree in which f1 and f2 are sibling-leaves has cost
f1 + f2 plus the cost for a tree with n − 1 leaves of frequencies (f1 + f2), f3, f4, . . . , fn:

4 / 17

The Huffman algorithm as in DPV text

Code for Huffman coding

Procedure Huffman(f)
Input: An array f[1 . . . n] of frequencies with f1 ≤ f2 . . . ≤ fn
Output: An encoding tree with n leaves
Let H be a priority queue of integers, ordered by f
For i : 1, . . . , n

insert(H, i)
For k : n + 1, . . . , 2n − 1

i = deletemin(H), j = deletemin(H)
create a node numbered k with children i , j
f [k] = f [i] + f [j]
insert(H, k)

5 / 17

The makespan problem

The input consists of n jobs J = J1, . . . , Jn that are to be scheduled
on m identical machines.
Each job Jk is described by a processing time (or load) pk .
The goal is to minimize the latest finishing time (maximum load) over
all machines.
That is, the goal is a mapping σ : {1, . . . , n} → {1, . . . ,m} that

minimizes maxk

(∑
`:σ(`)=k p`

)
.

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥ 1

m

n�
j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

6 / 17

Online greedy algorithm for makespan

Suppose we think of the jobs coming in as a stream of jobs J1, J2,

An online algorithm must assign each job immediately to a machine
before the next job arrives.

Graham’s online greedy algorithm for makespan

Consider input jobs in the order as they arrive in an online setting

Schedule each job Jj on any machine having the least load thus far.

7 / 17

Graham’s online greedy algorithm for makespan

Consider input jobs in the order as they arrive in an online setting

Schedule each job Jj on any machine having the least load thus far.

We will see that the approximation ratio for this algorithm is 2− 1
m

for all m > 1.

That is, for any sequence of jobs J ,

Greedy(J) ≤ (2− 1

m
)OPT (J).

I Greedy denotes the makespan (i.e. the cost) of the above greedy
algorithm.

I OPT stands for the cost of any (say, optimal) solution.

8 / 17

Graham’s online greedy algorithm for makespan

Consider input jobs in the order as they arrive in an online setting

Schedule each job Jj on any machine having the least load thus far.

Claim

The approximation ratio for this algorithm is 2− 1
m for all m > 1.

That is, for any sequence of jobs J , Greedy(J) ≤ (2− 1
m)OPT (J).

Basic proof idea:

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥ 1

m

n�
j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

9 / 17

The proof

The proof for the approximation follows the approach we used in the
interval colouring result.

We will establish some simple “intrinsic bounds” that any solution must
satisfy and then analyze the greedy solution in terms of the following

intrinsic bounds.

OPT (J) must be at least

B1 = max{p1, . . . , pn},

where pi is the processing time (load) of Ji .

OPT (J) must be at least the average machine load

B2 =
(p1 + . . .+ pn)

m
.

10 / 17

The proof (continued)

Claim

For any sequence of jobs J , Greedy(J) ≤ (2− 1
m)OPT (J).

Consider the job that completes last defining the makespan.
Without loss of generality we can say this is the nth (i.e. last) job.
Consider the assigned machine just before the assignment.

1 Its load is at most the average load of previous jobs, that is, B2 −
pn

m
.

2 After adding pn to the load, the makespan becomes

Greedy(J) ≤ B2 +

(
1− 1

m

)
pn ≤ B2 +

(
1− 1

m

)
B1

3 Hence, the greedy makespan Greedy(J) ≤
(
2− 1

m

)
OPT (J)

Exercise for your interest

Suppose pi stands for the load and jobs are temporary and only present in some
time interval [t1

i , t
2
i]. The goal is to minimize the makespan at every point of time.

11 / 17

Why study proofs? (again)

Looking at this proof we can see what seems to be causing the
biggest gap between an optimal assignment and that of the online
greedy algorithm.

Namely, a job that maximizes the load could be the last job defining
the makespan.

While this doesn’t show that the bound is tight, we do have the
following tight example:

I Let the first m(m−1) jobs have unit load while the last job has load pn = m.

I Then Greedy spreads the unit jobs evenly over the m machines (each
machine then having load m − 1) and then is stuck adding pn to some
machine. This forces the makespan to 2m − 1.

I OPT spreads the unit jobs over m − 1 machines so that it can achieve the
makespan m.

12 / 17

The LPT makespan algorithm

The proof and the tight example suggest a different (not online)
greedy algorithm.

Sort the jobs so that the largest come first (and hence the name LPT for
longest processing time).

It can be shown (although we will not do that now) that the
approximation ratio for the LPT makespan algorithm (on m identical
machines) is

(
4
3 − 1

3m

)
.

One can also achieve a somewhat better online approximation ratio
by not being entirely greedy.

13 / 17

Summarizing the greedy paradigm

Informally, (most) greedy algorithms consider one input item at a
time and make an irrevocable (“greedy”) decision about that item
before seeing more items.

To make this precise for any given problem we have to say
1 how input items are represented
2 how an algorithm determines the order in which input items are

considered.

Mainly, we need to define the class of orderings of the input items that
will be allowed. We cannot allow any ordering of the input set or else
one can say take exponential time to compute an “optimal ordering”.

If we say the ordering must be done in say time O(n log n) (or even
poly(n)) then we are in the situation of trying to prove that
something cannot be done in a given time bound.

14 / 17

One way to formalize how to order

For a given problem, assume that input items belong to some set J .

For any execution of the algorithm, the input is a finite subset I ⊂ J .

Let f : J → < be any function; that is, we do not place any
restriction on the complexity or even the computability of the
function.

Then for any actual input set I = {I1, . . . , In}, the function f induces
a total order on the input set (where we can break ties using the
index of the input items as given).

In a fixed order the function f is set initially. In an adaptive order,
there can be a different function fi in each iteration i with fi
depending on the items considered in iterations j < i .

15 / 17

Jeff Erickson’s comment on greedy algorithms

Algorithms Lecture 5: Dynamic Programming [Fa’10]

first, then the subproblems that depends only on base cases, and so on. More formally, the
dependencies you identified in the previous step define a partial order over the subproblems;
in this step, you need to find a linear extension of that partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and you
know how to solve each subproblem. So do that! If your data structure is an array, this
usually means writing a few nested for-loops around your original recurrence. You don’t
need to do this on homework or exams.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if you try
to build up answers in the wrong order, your algorithm won’t work!

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
Well. . . hardly ever.6

A different lecture note describes the effort required to prove that greedy algorithms are correct, in
the rare instances when they are. You will not receive any credit for any greedy algorithm for any
problem in this class without a formal proof of correctness. We’ll push through the formal proofs
for several greedy algorithms later in the semester.

5.5 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the minimum
number of letter insertions, letter deletions, and letter substitutions required to transform one word into
another. For example, the edit distance between FOOD and MONEY is at most four:

6Greedy methods hardly ever work! So give three cheers, and one cheer more, for the hardy Captain of the Pinafore! Then
give three cheers, and one cheer more, for the Captain of the Pinafore!

7

16 / 17

My view of greedy algorithms

First, the previous comments are in the context of emphasizing DP
algorithms and hence were a deliberate overstating of the point.
My view of greedy algorithms is that while they may rarely be optimal
or as good as more sophisticated algorithms, there are many cases
where they work well either in terms of provable approximations or “in
practice”.
Moreover, in some cases we imediately need something that works
and knowing some basic approaches to a problem becomes a starting
point. If nothing esle, greedy algorithms can be a benchmark for
comparison against more sophisticated algorithms.
DP algorithms, once they are formulated, often seem quite apparant.
But coming up with a correct DP formulation is often not so obvious.
In contrast, coming up with a correct (albeit possibly having poor
performance) greedy algorithm is usually easy to do.
Finally, there are applications (e.g. auctions) where conceptual
simplicity is a virtue in itself and to some extent conveys a sense of
“fairness”.

17 / 17

