
CSC 373: Algorithm Design and Analysis
Lecture 4

Allan Borodin

January 14, 2013

1 / 16

Lecture 4: Outline (for this lecture and next lecture)

Some concluding comments on optimality of EST Greedy Interval
Colouring Algorithm

Interval Graphs

Graph MIS and graph colouring

Kruskal’s MST

Huffman coding

Greedy algorithms for makespan problem

2 / 16

Comments on the proof technique in graph colouring

The proof technique used in proving the optimality of the EST greedy
algorithm for interval colouring is also often used for proving
approximations.

The idea is to find some bound (or bounds) that any solution must
satisfy and then relate that to the algorithm’s solution.

In this case, consider the maximum number of intervals in the input
set that intersect at any given point.

Observation

The number of colours must be at least this large.

For the interval colouring proof, it then just remained to show that
the greedy algorithm will never use more than this number of colours.

3 / 16

Why doesn’t the Greedy Colouring Algorithm
exceed this intrinsic bound?

Recall that we have sorted the intervals by nondecreasing starting
time (i.e. earliest start time first).

Let k = maximum number of intervals in the input set that intersect
at any given point.

Suppose for a contradiction that

the algorithm used more than k colours.

Consider the first time (say on some interval `) that the greedy
algorithm would have used k + 1 of colours.

I Then it must be that there are k intervals intersecting `.
I Let s` be the starting time of interval I`.
I These intersecting intervals must all include s`. Why?
I Hence, there are k + 1 intervals intersecting at s`!

4 / 16

Interval graphs

As we remarked last class, there is a natural way to view the interval
scheduling and colouring problems as graph problems.

Let I be a set of intervals. We can construct the intersection graph
G (I) = (V ,E) where

I V = I
I (u, v) is an edge in E iff the intervals corresponding to u and v

intersect.

Any graph that is the intersection graph of a set of intervals is called
an interval graph.

5 / 16

Graph MIS and Colouring

Let G = (V ,E) be a graph.
The following two problems are known to be “NP hard to
approximate” (to within a factor of n1−ε for any ε > 0) for arbitrary
graphs:

Graph MIS

A subset U of V is an independent set (aka stable set) in G if for all
u, v ∈ U, (u, v) is not an edge in E .

The maximum independent set (MIS) problem is to find a maximum
size independent set U.

Graph colouring

A function c mapping vertices to {1, 2, . . . , k} is a valid colouring of
G if c(u) is not equal to c(v) for all (u, v) ∈ E .

The graph colouring problem is to find a valid colouring so as to
minimize the number of colours k .

6 / 16

Efficient algorithms for interval graphs

Given a set I of intervals, it is easy to construct its intersection graph
G (I).

Note

Given any graph G , there is a linear-time algorithm to decide if G is an
interval graph and if so to construct an interval representation.

The interval scheduling (resp. interval colouring) problem becomes
the graph MIS (resp. colouring) problem for the intersection graph
and hence these problems are efficiently solved for interval graphs.

I Question: Is there a graph theoretic explanation?
I YES: interval graphs are chordal graphs.

The minimum colouring number (chromatic number) of a graph is
always at least the size of a maximum clique (clique number).
The greedy interval colouring proof shows that for interval graphs
(and chordal graphs) the chromatic number = clique number.; i.e.
perfect graphs. However, Mycielskis Theorem shows that there exist
triangle-free graphs with arbitrarily high chromatic number.

7 / 16

Greedy algorithms for the MST problem

We will start with Kruskal’s algorithm. The presentation in DPV also
considers appropriate data structures for implementing the algorithm.

In terms of the basic structure of the algorithm it is very similar to
the EFT algorithm for interval scheduling.

Kruskal’s algorithm

Order edges so that we1 ≤ we2 ≤ . . . ≤ wem .
Let T := ∅ % T is the current forest to be extended to an MST
For i : 1, . . . ,m

If ei connects two components of T :
T := T ∪ {ei}

End For

Claim

Same style inductive proof (using cut property to show Ti is promising)
could be used to show Kruskal’a algorithm is optimal.

8 / 16

Code for Kruskal’s algorithm as in DPV text

DPV Figure 5.4: Kruskals minimum spanning tree algorithm

Procedure Kruskal(G ,w)
Input: A connected undirected graph G = (V ,E) with edge weights we

Output: A minimum spanning tree defined by the edges X
For all u ∈ V :

makeset(u)
X = ∅
Sort the edges E by (non-decreasing) weight
For all edges {u, v} ∈ E , in increasing order of weight

If find(u) 6= find(v):
add edge {u, v} to X

union(u, v)

Comment

The inductive proof for optimality of Kruskal or Prim’s MST algorithm
shows that when all edges are distinct, the MST is unique.

9 / 16

Prim’s MST and Dikstra’s Least Cost Paths

Prim’s algorithm (and the proof of its optimality) for the MST
problem is very similar but now the next edge is adaptively chosen to
be the smallest edge leaving the current component.

The style of Prim’s MST algorithm is very similar to Dikstra’s
algorithm for computing least cost paths from a single source node s
to all the other nodes in a directed graph with non-negative edge
costs.

We can view the single source least cost problem as computing a least
cost tree with root s.

I At each iteration i , having computed the tree for nodes in some set Si ,
the next edge (or node) to be chosen is the one that minimizes the
cost to a node not in Si by adding an edge leaving Si .

I It can be shown (in some precise model for greedy algorithms) that an
adaptive order for choosing edges is necessary; that is, a fixed order will
not work.

10 / 16

Huffman (prefix-free) binary encoding

Consider a set of symbols Γ = {s1, s2, . . . , sn}.

These symbols appear in some context (e.g. words in a document,
discrete samples from a signal, etc.).

We want to encode each symbol si as a binary string, call it σi .

We assume that these symbols occur with different frequencies with
symbol si having frequency fi .

Clearly if a symbol say s occurs very often (resp. infrequently), we
want to use a relatively short (resp. long) string to represent it.

In order to simplify decoding, a nice property is that the encodings
{σi} satisfy the prefix-free property that no codeword σi is the prefix
of another code word σj .

11 / 16

Prefix binary codes as binary trees

Such an encoding is equivalent to a full ordered binary tree T ; that is,
a rooted binary tree where

I Every non leaf has exactly two children
I With the left edge say labeled 0 and the right edge labeled 1
I With every leaf labeled by a symbol in Γ

Then the labels along the path to a leaf define the string encoding
the symbol at that leaf. The goal is to create such a tree T so as to
minimize

cost(T) =
∑

i

fi · (depth of si in T)

Equivalently we are minimizing the expected symbol length, namely

Es∈Γ[|σ(s)|] =
∑

i

pi · (depth of si in T)

where pi = fi∑
i fi

is the probability of si .

The intuitive idea is to greedily combine the two lowest frequency
symbols s1 and s2 to create a new symbol with frequency f1 + f2.

12 / 16

An example of Huffman coding in DPV

154 Algorithms

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets.

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

for our toy example, where (under the codes of Figure 5.10) the total size of the binary string
drops to 213 megabits, a 17% improvement.

In general, how do we find the optimal coding tree, given the frequencies f1, f2, . . . , fn of
n symbols? To make the problem precise, we want a tree whose leaves each correspond to a
symbol and which minimizes the overall length of the encoding,

cost of tree =
n∑

i=1

fi · (depth of ith symbol in tree)

(the number of bits required for a symbol is exactly its depth in the tree).
There is another way to write this cost function that is very helpful. Although we are only

given frequencies for the leaves, we can define the frequency of any internal node to be the
sum of the frequencies of its descendant leaves; this is, after all, the number of times the
internal node is visited during encoding or decoding. During the encoding process, each time
we move down the tree, one bit gets output for every nonroot node through which we pass. So
the total cost—the total number of bits which are output—can also be expressed thus:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.
The first formulation of the cost function tells us that the two symbols with the smallest

frequencies must be at the bottom of the optimal tree, as children of the lowest internal node
(this internal node has two children since the tree is full). Otherwise, swapping these two
symbols with whatever is lowest in the tree would improve the encoding.
This suggests that we start constructing the tree greedily: find the two symbols with the

smallest frequencies, say i and j, and make them children of a new node, which then has
frequency fi + fj. To keep the notation simple, let’s just assume these are f1 and f2. By the
second formulation of the cost function, any tree in which f1 and f2 are sibling-leaves has cost
f1 + f2 plus the cost for a tree with n − 1 leaves of frequencies (f1 + f2), f3, f4, . . . , fn:

13 / 16

The Huffman algorithm as in DPV text

Code for Huffman coding

Procedure Huffman(f)
Input: An array f[1 . . . n] of frequencies with f1 ≤ f2 . . . ≤ fn
Output: An encoding tree with n leaves
Let H be a priority queue of integers, ordered by f
For i : 1, . . . , n

insert(H, i)
For k : n + 1, . . . , 2n − 1

i = deletemin(H), j = deletemin(H)
create a node numbered k with children i , j
f [k] = f [i] + f [j]
insert(H, k)

14 / 16

What are chordal graphs?

The following two slides were not discussed in class but I leave them here
for anyone who is interested.

There are many equivalent ways to define chordal graphs.

For our purposes, let’s define chordal graphs G = (V ,E) as those
having a perfect elimination ordering (PEO) of the vertices.

PEO

An ordering v(1), v(2), . . . , v(n) such that for all i ,

Neighbourhood(v(i)) intersect {v(i + 1), . . . , v(n)} is a clique (i.e. the
MIS of the induced graph of the inductive neighbourhood is 1).

Note

Ordering intervals by earliest finishing times will provide a PEO for
the intersection graph of intervals

Hence interval graphs are chordal.

15 / 16

More on chordal graphs

We can abstract the arguments used for interval selection to show
the optimality of greedy algorithms for any chordal graph using a
PEO ordering.

We can abstract the arguments used for interval colouring to show
the optimality of greedy algorithms for any chordal graph using a
reverse PEO ordering.

An equivalent (and initial) definition of chordal graphs are

graphs which do not have any k-cycles (for k > 3) as induced subgraphs

What are and are not chordal graphs? For example a 4-cycle cannot
be an interval graph. Trees are chordal graphs.

Can generalize chordal graphs by generalizing PEO orderings so that
the induced neighbourhoods have MIS = k for some small k .

16 / 16

