CSC 373: Algorithm Design and Analysis Lecture 30

Allan Borodin

April 5, 2013

Announcements and Outline

Announcements

- Two misstated questions on term test
- Grading scheme for term test 3:
 - Test will be graded out of 25 with a max of 30 (i.e. up to 20% bonus possible where now everyone has a better chance of getting bonus marks)
 - **Q** Full credit (10 points) for seeing that Q1 was trivial; two points for saying "false" because of clauses containing x ∨ x̄
 - O Can obtain full credit for interpreting question in terms of approximation ratio.

Today's outline

- Comments on the nature of the final exam
- Review and finish discussion of RWALK algorithm for 2SAT
- Brief discussion of 1-sided randomized compositeness algorithm

Papadimitriou's random walk algorithm for 2-SAT

- It is not difficult to show that 2-SAT (determining if a 2CNF formula is satisfiable) is efficiently computable (reducible to directed ST connectivity) whereas we know that 3-SAT is NP complete.
- We will provide a conceptually simple 1-sided randomized algorithm (RWALK) running in time O(n²) to show that 2-SAT is computationally easy.
- The same basic approach can be used to derive a randomized algorithm (which in turn has led to a deterministic variant of the idea) for 3SAT that runs in time (1.324)ⁿ. It is a big open question if one can get time 2^{o(n)} algorithm for 3-SAT.
- This random walk idea is the basis for a widely used class of algorithms known as Walk-Sat algorithms for SAT problems.

Random walk algorithm for 2-SAT

RWALK algorithm for 2CNF formula *F*

Choose a random or arbitrary truth assignment τ For $i = 1, 2, \dots, (c \cdot n^2)$ % with a sufficiently large c to obtain any desired probability of success If τ satisfies F then Report success and quit Else Let C be an unsatisfied clause and choose one of its literals ℓ_i at random Flip the truth value of the literal ℓ_i to change τ End If End For

Claim

If f is satisfiable, then with say probability at least $\frac{1}{2}$ the RWALK algorithm will succeed in finding a satisfying truth assignment.

• We can either increase *c* or run RWALK many times to increase the probability of success.

Why RWALK works

Claim

Let τ^* be a truth assignment satisfying an *n* variable 2CNF *F*. Then we can view RWALK as a random walk on a line graph (with nodes 1, 2, ..., n) that is trying to reach node *n* where node *i* indicates that τ matches τ^* in *i* coordinates.

- Since the clause C was not satisfied, at least one of its literals must be set different than τ^* . (It could be that both literals are different.)
- This means that the probability (in terms of the walk on the line) of getting closer to node *n* is at least $\frac{1}{2}$.
- It can happen that as we are randomly walking, we may come across another satisfying assignment but that will only shorten the time needed.
- What remains to be shown is that a random walk on the line with probability $\frac{1}{2}$ to move left or right will hit every point on the line in expected time $2n^2$.
- More generally, a uniform random walk (starting at any node) on a connected graph G = (V, E) will hit all nodes in expected time 2|E|(|V| 1).

Randomized Compositeness/Primality Algorithm

One of the most influential randomized algorithms is a polynomial time method for determining if a number is prime/composite.

Quick modern history of primality testing

- Independently Solovay and Strassen, and Rabin (1974) gave two different polynomial time 1-sided error algorithms for determining if an *n* digit number *x* is prime.
- The algorithm always outputs PRIME if x is prime and outputs COMPOSITE with probability (say) $\frac{1}{2}$ if x is composite.
- That is, the algorithm could error (saying PRIME when x is composite) with probability at most ¹/₂.
 - This error probability can be reduced by repeated indpendent trials of the algorithm.
 - That is, t trials would then yield an error probability at most $\frac{1}{2^t}$.

History continued

• The Rabin algorithm is related to deterministic polynomial time algorithm by G. Miller (1976) whose correctness requires the Extended Riemann Hypothesis (ERH), a famous well-believed conjecture in number theory.

• Goldwasser and Kilian (1986) gave a polynomial time 0-sided error algorithm.

• Agarwal, Kayal and Saxena (2002) gave a deterministic polynomial time algorithm.

So why concern oursleves with randomized algorithms when the problem is solved?

- There are polynomials and there are polynomials
- The deterministic (or 0-sided algorithms) are not nearly as practical as the 1-sided algorithms
- These algorithms are an essential ingrediant in much of modern cryptography where random primes are often needed.
- Note that while primality testing is theoretically (i.e. in P) and practically solvable, factoring is believed to be NP hard and even hard in some sense of "average case complexity".
- Complexity based cryptography also depends on the hardness of problems such as factoring integers.

Some basic group theory and number theory

- Z^{*}_N = {a ∈ Z_N | gcd(a, N) = 1} is a commutative group under multiplication (mod N)
- Lagrange Theorem If *H* is a subgroup of *G* then *order*(*H*) divides *order*(*G*).
- Fermat's Little Theorem: If N is prime then for $a \neq 0 \pmod{N}$, $a^{N-1} = 1 \pmod{N}$
- Furthermore, if N is prime, then Z_N^* is a cyclic group; that is, $\exists g : \{g, g^2, \dots, g^{N-1}\} = Z_N$. This implies that for such a generator $g, g^i \neq 1$ for $1 \leq i < N-1$
- If N is prime, then $\pm 1 \mod N$ are precisely two distinct square roots of 1.
- The Chinese Remainder Theorem: If N_1 and N_2 are relatively prime, then for all v_1, v_2 , there exists a unique non-negative $w < N_1 \cdot N_2$ such that $w = v_1 \pmod{N_1}$ and $w = v_2 \pmod{N_2}$

A simple but not quite correct algorithm

We need two computational facts:

- aⁱ (mod N) can be efficiently computed by "repeated squaring mod N".
- 2 gcd(a, b) can be efficiently computed by the Euclidean algorithm.

Simple randomized primality algorithm that "almost works"

- Choose $a \in Z_N \setminus \{0\}$ uniformly at random
- If $gcd(a, N) \neq 1$ or $a^{N-1} \pmod{N} \neq 1$, then output "COMPOSITE"
- Otherwise output "PRIME".

When the simple algorithm does (and doesn't) work

•
$$S = \{a \in Z_N^* \mid a^{N-1} = 1 \pmod{N}\}$$
 is a subgroup of Z_N^*

- Hence either $S = Z_N^*$ if S is a proper subgroup, or by the Lagrange Theorem, $|S| \le \frac{|Z_N^*|}{2} = \frac{N-1}{2}$ if S is not proper.
- Hence if the simple algorithm finds an *a* where gcd(a, N) = 1 but $a^{N-1} \neq 1 \pmod{N}$, then *S* is proper and therefore at least $\frac{1}{2}$ half of the elements in $Z_N \setminus \{0\}$ will be certificates showing *N* is not prime.
- Hence the only numbers N that can defeat the simple algorithm are the Carmichael numbers (also called false primes); i.e. those N for which $a^{N-1} = 1 \pmod{N}$ for all $a \in Z_N^*$.
- It was only relatively recently (1994) when it was proven that there are infinitely many Carmichael numbers.
 - ► The first three Carmichael numbers are 561, 1105, 1729.
 - There are only 255 Carmichael numbers \leq 100,00,000.

Miller-Rabin 1-sided randomized algorithm

The Miller-Rabin algorithm

If $gcd(a, N) \neq 1$ then report **composite** and terminate % This test isn't really needed but we add it for clarity Compute t, u such that $N - 1 = (2^t u)$, u odd and $t \ge 1$. $x_0 := 2^u$ % all computations are mod NRandomly choose $a \in Z_N \setminus \{0\}$ **For** i = 1, ..., t $x_i := x_{i-1}^2$ If $x_i = 1$ and $x_{i-1} \notin \{-1, 1\}$ then report **composite** and terminate End For If $x_t \neq 1$ then report **composite** and terminate Else report **prime**

- Claim: $\mathbb{P}[\text{algorithm reports prime} \mid N \text{ is composite}] \leq \frac{1}{2}$
- Proof relies on fact that N is Carmichael implies $N = N_1 \cdot N_2$ with $gcd(N_1, N_2) = 1$