CSC 373: Algorithm Design and Analysis
Lecture 30

Allan Borodin

April 5, 2013

/12

Announcements and Qutline

Announcements
@ Two misstated questions on term test

@ Grading scheme for term test 3:

@ Test will be graded out of 25 with a max of 30 (i.e. up to 20% bonus
possible where now everyone has a better chance of getting bonus
marks)

@ Full credit (10 points) for seeing that Q1 was trivial; two points for
saying “false” because of clauses containing x V X

© Can obtain full credit for interpreting question in terms of
approximation ratio.

Today’s outline
o Comments on the nature of the final exam
@ Review and finish discussion of RWALK algorithm for 2SAT

@ Brief discussion of 1-sided randomized compositeness algorithm

)

N

Papadimitriou’s random walk algorithm for 2-SAT

@ It is not difficult to show that 2-SAT (determining if a 2CNF formula
is satisfiable) is efficiently computable (reducible to directed ST
connectivity) whereas we know that 3-SAT is NP complete.

@ We will provide a conceptually simple 1-sided randomized algorithm
(RWALK) running in time O(n?) to show that 2-SAT is
computationally easy.

@ The same basic approach can be used to derive a randomized
algorithm (which in turn has led to a deterministic variant of the
idea) for 3SAT that runs in time (1.324)". It is a big open question if
one can get time 2°(" algorithm for 3-SAT.

@ This random walk idea is the basis for a widely used class of
algorithms known as Walk-Sat algorithms for SAT problems.

Random walk algorithm for 2-SAT

RWALK algorithm for 2CNF formula F

Choose a random or arbitrary truth assignment 7
Fori=1,2,...,(c-n?
% with a sufficiently large ¢ to obtain any desired probability of success
If 7 satisfies F then
Report success and quit
Else
Let C be an unsatisfied clause and choose one of its literals ¢; at random
Flip the truth value of the literal ¢; to change 7
End If
End For

Claim

If f is satisfiable, then with say probability at least % the RWALK algorithm will
succeed in finding a satisfying truth assignment.

@ We can either increase ¢ or run RWALK many times to increase the probability
of success.

Why RWALK works

Claim

Let 7* be a truth assignment satisfying an n variable 2CNF F. Then we can view
RWALK as a random walk on a line graph (with nodes 1,2, ..., n) that is trying
to reach node n where node i indicates that 7 matches 7* in i coordinates.

@ Since the clause C was not satisfied, at least one of its literals must be set
different than 7*. (It could be that both literals are different.)

@ This means that the probability (in terms of the walk on the line) of getting
closer to node n is at least %

@ It can happen that as we are randomly walking, we may come across
another satisfying assignment but that will only shorten the time needed.

@ What remains to be shown is that a random walk on the line with
probability % to move left or right will hit every point on the line in
expected time 2n°.

@ More generally, a uniform random walk (starting at any node) on a
connected graph G = (V/, E) will hit all nodes in expected time
20E(|v| - 1).

Randomized Compositeness/Primality Algorithm

One of the most influential randomized algorithms is a polynomial time
method for determining if a number is prime/composite.

Quick modern history of primality testing

@ Independently Solovay and Strassen, and Rabin (1974) gave two
different polynomial time 1-sided error algorithms for determining if
an n digit number x is prime.

@ The algorithm always outputs PRIME if x is prime and outputs
COMPOSITE with probability (say) % if x is composite.

@ That is, the algorithm could error (saying PRIME when x is
composite) with probability at most %
This error probability can be reduced by repeated indpendent trials of
the algorithm.
That is, t trials would then yield an error probability at most %

6/12

History continued

@ The Rabin algorithm is related to deterministic polynomial time
algorithm by G. Miller (1976) whose correctness requires the
Extended Riemann Hypothesis (ERH), a famous well-believed
conjecture in number theory.

@ Goldwasser and Kilian (1986) gave a polynomial time O-sided error
algorithm.

o Agarwal, Kayal and Saxena (2002) gave a deterministic polynomial
time algorithm.

So why concern oursleves with randomized
algorithms when the problem is solved?

@ There are polynomials and there are polynomials

@ The deterministic (or O-sided algorithms) are not nearly as practical
as the 1-sided algorithms

@ These algorithms are an essential ingrediant in much of modern
cryptography where random primes are often needed.

@ Note that while primality testing is theoretically (i.e. in P) and
practically solvable, factoring is believed to be NP hard and even hard
in some sense of “average case complexity”.

@ Complexity based cryptography also depends on the hardness of
problems such as factoring integers.

Some basic group theory and number theory

Zj ={a€ Zy | gcd(a, N) =1} is a commutative group under
multiplication (mod N)

Lagrange Theorem If H is a subgroup of G then order(H) divides
order(G).

Fermat’s Little Theorem: If N is prime then for a # 0 (mod N),
aV=1 =1 (mod N)

Furthermore, if N is prime, then Zy is a cyclic group; that is,
Jg:{g, g% ...,g""1} = Zy. This implies that for such a generator
g, 8 #lfor1<i<N-1

If N is prime, then £1 mod N are precisely two distinct square roots
of 1.

The Chinese Remainder Theorem: If N; and N, are relatively
prime, then for all vi, v», there exists a unique non-negative
w < Ni - Ny such that w = v; (mod Np) and w = v» (mod N>)

A simple but not quite correct algorithm

We need two computational facts:

@ 2’ (mod N) can be efficiently computed by “repeated squaring mod
N".
@ gcd(a, b) can be efficiently computed by the Euclidean algorithm.

Simple randomized primality algorithm that “almost works”
@ Choose a € Zy \ {0} uniformly at random
e If gcd(a,N) # 1 or aN~1 (mod N) # 1, then output “COMPOSITE"
@ Otherwise output “PRIME".

10/12

When the simple algorithm does (and doesn’t) work

o S={ae Zj|a"t =1 (mod N)} is a subgroup of Z,

@ Hence either S = Zj if S is a proper subgroup, or by the Lagrange

Theorem, |S| < lZ"" = NZLif S is not proper.

@ Hence if the simple algorithm finds an a where gcd(a, N) =1 but
aV=1 £ 1 (mod N), then S is proper and therefore at least % half of
the elements in Zy \ {0} will be certificates showing N is not prime.

@ Hence the only numbers N that can defeat the simple algorithm are
the Carmichael numbers (also called false primes); i.e. those N for
which aV=1 =1 (mod N) for all a € Z,.

@ It was only relatively recently (1994) when it was proven that there
are infinitely many Carmichael numbers.
» The first three Carmichael numbers are 561, 1105, 1729.
» There are only 255 Carmichael numbers < 100,00,000.

11/12

Miller-Rabin 1-sided randomized algorithm

The Miller-Rabin algorithm

If gcd(a, N) # 1 then report composite and terminate
% This test isn't really needed but we add it for clarity

Compute t, u such that N — 1 = (2'u),u odd and t > 1.
Xxg = 2 % all computations are mod N
Randomly choose a € Zy \ {0}
Fori=1,...,t

Xj = x2 4

If ; =1 and x;_1 ¢ {—1,1} then report composite and terminate
End For
If x; # 1 then report composite and terminate
Else report prime

e Claim: P[algorithm reports prime | N is composite] < 1
@ Proof relies on fact that N is Carmichael implies N = Ny - N, with
ng(Nl, N2) =1

12 /12

