
CSC 373: Algorithm Design and Analysis
Lecture 29

Allan Borodin

April 1, 2013

1 / 11

Announcements and Outline

Announcements

Hand in assignments now

Last tutorial today

Last term test Wed in lecture

Today’s outline

Answer questions on problem set 3.

“One size does not necessarily fit all”: What kind of algorithms can be
used for the unweighted and weighted MIS on various graph classes?

The following two concluding topics will not be on the term test or
final exam.

1 A randomized algorithm for 2-SAT and its (improved exponential)
extension to k-SAT (the underlying idea for “Walksat” algorithms)

2 A randomized algorithm for primality testing.

2 / 11

One size (i.e. paradigm) does not necessarily fit all

We recall:

For (unweighted) MIS on chordal graphs, a greedy algorithm (using
the PEO) is optimal and provides a k-approximation for inductive k
independent graphs.

For weighted MIS on k + 1 claw free graphs, a greedy algorithm
(sorting by non decreasing weight) provides a k approximation.

For unweighted MIS on k + 1 claw free graphs, an oblivious local
search provides a k+1

2 approximation.

Can we use local search to optimally solve the unweighted MIS on
interval and chordal graphs and then hopefully improve the
approximation bound for MIS or even weighted MIS on inductive k
independent graphs?

3 / 11

One size does not necessarily fit all continued

We recall:

We cannot solve the weighted interval scheduling problem by a greedy
algorithm (given a reasonably broad definition of what we mean by a
greedy algorithm).

Instead, we resorted to dynamic programming DP (see Lecture 6).

One could hope that the same kind of DP could solve the weighted
MIS problem for chordal graphs and then hopefully help to give an
approximation for the inductive k-independence graphs.

However, the DP we are using exploits an additional property of the
PEO defined by non-decreasing finishing times:

I For a given vj , the conflicting vertices earlier in the ordering are a
consecutive sequence of intervals vj−1, . . . , vi for some i < j .

4 / 11

“Stack algorithms”

There is a “local ratio” or primal dual algorithm (with reverse delete)
that can be modeled as a “stack algorithm” (utilizing the PEO) that
optimally solves the weighted MIS for chordal graphs.

(Aside) This stack algorithm can be reinterpreted as a DP for
weighted MIS on chordal graphs but this DP is not as conceptually
simple as in the weighted interval scheduling DP

The same stack algorithm provides a k approximation for the
weighted MIS for inductive k-independence graphs (using the k-PEO)
to determine the order in which vertices are either rejected or placed
on a stack.

5 / 11

Local ratio (simple primal dual) algorithm for
weighted MIS on chordal graphs (Akcoglu et al)

Let V = {v1, . . . , vn} be sorted so that it is a PEO.
Stack := ∅
For i : 1, . . . , n

w ′i := wi % w ′i will be the current residual profit
End For
For j : 1, . . . , n

Push vj onto Stack if w ′j > 0
For all vertices vk with k > j intersecting Ij

w ′k := w ′k − w ′j
End For

End For

6 / 11

Continuation of local ratio algorithm.

S := ∅
While Stack 6= ∅

Pop Stack and let v be vertex popped
If v can be feasibly scheduled with already scheduled vertices in S:
S := S ∪ {v}

End If
End While

7 / 11

Some concluding on algorithms for graph classes

Concluding comments on this topic

Of course, for a specific class of graphs, there can be much better
approximations (e.g. for the intersection graphs of disc graphs by
exploiting additional geometric properties of these graphs) that can
be achieved.

But for JISP, the 2-approximation is the best known polynomial time
approximation for the weighted case. There is a better polynomial
time approximation for the unweighted case but to achieve any
meaningful approximation improvement the run time of the algorithm
is too costly.

8 / 11

Papadimitriou’s random walk algorithm for 2-SAT

It is not difficult to show that 2-SAT (determining if a 2CNF formula
is satisfiable) is efficiently computable (reducible to directed ST
connectivity) whereas we know that 3-SAT is NP complete.

We will provide a conceptually simple 1-sided randomized algorithm
(RWALK) running in time O(n2) to show that 2-SAT is
computationally easy.

The same basic approach can be used to derive a randomized
algorithm (which in turn has led to a deterministic variant of the
idea) for 3SAT that runs in time (1.324)n. It is a big open question if
one can get time 2o(n) algorithm for 3-SAT.

This random walk idea is the basis for a widely used class of
algorithms known as Walk-Sat algorithms for SAT problems.

9 / 11

Random walk algorithm for 2-SAT

RWALK algorithm for 2CNF formula F

Choose a random or arbitrary truth assignment τ
For i = 1, 2, . . . , (c · n2)

% with a sufficiently large c to obtain any desired probability of success
If τ satisfies F then

Report success and quit
Else

Let C be an unsatisfied clause and choose one of its literals `i at random
Flip the truth value of the literal `i to change τ

End If
End For

Claim

If f is satisfiable, then with say probability at least 1
2 the RWALK algorithm will

succeed in finding a satisfying truth assignment.

We can either increase c or run RWALK many times to increase the probability
of success.

10 / 11

Why RWALK works

Claim

Let τ∗ be a truth assignment satisfying an n variable 2CNF F . Then we can
view RWALK as a random walk on a line graph (with nodes 1, 2, . . . , n) that is
trying to reach node n where node i indicates that τ matches τ∗ in i
coordinates.

Since the clause C was not satisfied, at least one of its literals must be set
different than τ∗. (It could be that both literals are different.)
This means that the probability (in terms of the walk on the line) of
getting closer to node n is at least 1

2 .
It can happen that as we are randomly walking, we may come across
another satisfying assignment but that will only shorten the time needed.
What remains to be shown is that a random walk on the line with
probability 1

2 to move left or right will hit every point on the line in
expected time 2n2.
More generally, a uniform random walk (starting at any node) on a
connected graph G = (V ,E) will hit all nodes in expected time 2|E ||V |.

11 / 11

