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Announcements and Outline

Announcements

Problem set 3 is now complete and due April 1.

Term Test 3 in lecture, Wednesday, April 3.

Tutorial today. Material in tutorials and lectures is relevant to the
upcoming term test and final exam.

Today’s outline

Continue discussion of set packing

The k-set packing problem

k + 1 clawfree graphs

Greedy and local search algorithms for set packing and MIS on k + 1
clawfree graphs

Charging arguments
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Recall the weighted set packing problem

The weighted set packing problem

As in the set cover problem, we are given a collection of sets
C = {S1, S2, . . . ,Sn} over a universe U = {e1, e2, . . . , em} and
wi = w(Si ).

Goal: Choose a subcollection C′ of disjoint sets so as to maximize∑
i :Si∈C ′ wi .

When the size of the sets Si is restricted such that |Si | ≤ k we call
this the k-set packing problem.
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Set packing (SP) as an MIS problem

The graph theoretic interpretation of the above problem is as follows:
I Given a set packing instance define graph G = (V ,E ) with

V = {S1, S2, . . . Sn} and E = {(Si ,Sj) | Si
⋂
Sj 6= ∅}.

I The (weighted) set packing problem becomes the (weighted) maximum
independent set (W)MIS problem on this graph.

Note: This is another example of a polynomial time transformation:

SP ≤p MIS.

Given an MIS problem, interpreting it as a set packing problem is also
quite straightforward.

I The set of elements U = e1, e2, . . . , em consist of the edges of the
graph G = (V ,E ).

I The collection of sets Si for 1 ≤ i ≤ |V |(= n) is given by the adjacency
list of the edges.

I Note that in this case, m ≤ n2, |Si | ≤ n and |Si ∩ Sj | ≤ 1.

That is, this second transformation shows that MIS ≤p SP.
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Complexity of SP and MIS

As mentioned , some experts believe BPP (and hence ZPP and RP)
are the same as P. But in any case, it is strongly believed that
NP 6= RP.

In arbitrary graphs MIS is hard to approximate to within a factor of
n1−ε for any ε > 0 (assuming ZPP 6= NP), while it trivial to get an
approximation factor of n.

For (weighted) SP, it is also immediate to obtain an approximation of
min{n,m}.

The transformation MIS ≤p SP shows that under the same
complexity assumption (ZPP 6= NP) that it is hard to approximate set

packing to within a factor min{n,m
1
2
−ε} for any ε > 0.
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Greedy algorithms for set packing

It is not difficult to show that a natural greedy algorithm obtains an
approximation ratio of min(n,m) in the case of the weighted set
packing problem. What would you try?

I Perhaps the most basic and natural algorithm is to sort sets so that
w(S1) ≥ w(S2) ≥ . . . ≥ w(Sn) and accept greedily (i.e. take the set if
it does not conflict).

I Another natural greedy algorithm for the Weighted Set Packing
Problem to sort the sets according to the ratio w(S)/|S |.

For the set packing problem, these natural greedy algorithms have
approximation ratio of min(n,m) which in practice is a very poor
approximation ratio. We consider another variant.

A better set packing greedy algorithm

Sort sets according to the ratio w(S)/
√
|S | and accept greedily.

This variant can be shown to have an approximation ratio of
min(n,

√
m) and by our complexity assumptions is essentially the best

worst case approximation.
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The k-Set packing problem

We now take a closer look at the k-set packing problem and the
graphs induced by it.

k-set packing is a reasonable and practical restriction given the
appllication to say auctions.

In the graph induced by the set packing problem, the neighborhood of
a set Si is given by N(Si ) = {Sj | (Si , Sj) ∈ E} and since every set
contains at most k elements, the neighborhood is vertex covered by
at most k cliques.

Such graphs are called locally-VCCk (vertex clique cover) graphs.

These are not the same as VCCk graphs where the entire graph can
be vertex covered by at most k cliques.
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k + 1 clawfree graphs

Locally-VCCk graphs belong to a broader class of graphs called k + 1
clawfree graphs or locally-ISk (independent set) graphs.

G is said to be k + 1 clawfree if for any vertex v in the graph, N(v)
has at most k independent vertices. That is, G does not contain a
“claw” K1,k+1, the complete bipartite graph, as an induced subgraph.

Such graphs occur in various other scenarios as well.

Intersection graphs of unit discs can be shown to be 6-clawfree. (Such
graphs are sometimes studied in the context of wireless networks.)

Unit interval graphs are 3-clawfree.

Intersection graphs of axis parallel unit squares are 5-clawfree graphs.

Note: However, intersection graphs of arbitrary size discs, intervals,
squares are not k + 1 clawfree for any k.
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The MIS problem for k + 1 clawfree graphs

Theorem

The natural greedy algorithm (sort by weights) is a k-approximation
algorithm for WMIS problem on any (k + 1) clawfree graph.

We will prove this theorem using a charging argument.

Let Copt represent an optimal set of vertices and let Cgre represent
the the set of vertices obtained using the natural greedy algorithm.

Let h be a mapping from Copt to Cgre . For ν ∈ Copt , define h(ν):

h(ν) = arg max
v ′∈Cgre :(v ,v ′)∈E

w(v ′) (1)

We assume that any ties are broken lexicographically.
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Charging argument continued

We first consider the unweighted case.

We observe that there at most k vertices ν ∈ Copt that can get
mapped to the same v ′ ∈ Cgre by the assumed clawfree nature of the
graph. Why?

It cannot happen that k + 1 elements in Copt get mapped to the
same element in Cgre since this would either imply the existence of a
k + 1 claw or that the k + 1 vertices in Copt are not independent,
neither of which can be true.

For the weighted case, we observe that if ν ∈ Copt is mapped to
v ′ ∈ Cgre , then w(ν) ≤ w(v ′). Why?

This implies that the weight of vertices in Copt is at most k times the
weight of vertices in Cgre conclusing the proof.
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Local Search for MIS on k + 1 clawfree graphs

Can we do better than a k-approximation for (W)MIS on k + 1
clawfree graphs and hence for the (weighted) k set packing problem?

Khanna et al and Yu and Goldschmidt showed that we can get k+1
2

approximation for unweighted MIS on k + 1 clawfree graphs using a
“2-improvement” (i.e. essentially a Hamming distance 3) local search.

I We can achieve k
2 + ε approximation using t-improvement local search.

In the weighted case, it can be shown that the locality gap for the
oblivious distance t local search algorithm is
(k − 1 + 1

t )-approximation for weighted k-set packing.

We will, however, soon see that we can improve upon the
approximation ratio by either using a greedy initial solution and
oblivious local search, or by using a non-oblivious local search.
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Oblivious local search for weighted MIS on k + 1
claw free graphs

A simple (and arguably the most natural) oblivious local search
algorithm provides a k approximation for the weighted MIS problem
on k + 1 clawfree graphs.
In fact, the algorithm below has locality ratio k ; i.e. any local
optimum is a k approximation to the global optimum. It is not a
totality ratio.

Simple oblivious local search for weighted MIS

Input: G = (V ,E ), with weight wi = w(vi )
Output: An Independent set S ⊆ V
S := ∅
While ∃vi ∈ such that wi > w(N(vi ) ∩ S)

% that is, if we add vi to S and remove N(vi ) in S
% where N(vi ) = {vj |(vi , vj) ∈ E}

S := S ∪ {vi} \ N(Si )
End While
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Charging argument to establish locality ratio

Claim: The simple oblivious local search for weighted MIS is a k
approximation for k + 1 clawfree graphs. Moreover, the simple local search
has local ratio = k .

The proof is a charging argument where we charge the weight of an
arbitrary solution (i.e. an OPT solution) to the weight of any local
optimum S .

More precisely, we will charge the weight of any v ∈ OPT to the
weights of vertices in S so that for any x ∈ S , at most at most k
times the weight of x is charged to x .

The charging argument is a little different than those we have
encountered before.
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Charging argument continued

For any v ∈ OPT ∩ S , we charge the weight of v to itself.

We can therefore now assume OPT ∩ S = ∅.

Let v ∈ OPT have neighbourhood N(v) = {v1, . . . , v`}.
N(v)∩ S 6= ∅ since otherwise the algorithm could have added v to S .
Aside: We know ` ≤ k since S is an independent set and G is
clawfree, but we really don’t need that fact.

We charge the neighbours of v (in S) a proportional amount of v ’s
weight. Namely, we charge vj ∈ Nbhd(v) ∩ S the weight
w(v) · wj

w1+...w`

Because S is a local optimum, w(v) ≤ w1 + . . .+ w`

Since OPT is an independent set, any vj ∈ S can be charged by at
most k vertices v ∈ OPT since G is clawfree.
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