CSC 373: Algorithm Design and Analysis
Lecture 26

Allan Borodin

March 22, 2013

/17

Announcements and Qutline

Announcements
@ Lecture this Friday; slower pace for rest of term.
@ Next week in tutorial, we will go over all the basic probability
concepts that are needed for this part of the course.
@ There are many texts which will have a short section on basic
probability concepts; for example, see section 13.12 of the Kleinber
and Tardos text.

Today’s outline
@ Finish up weighted set cover with randomized rounding
@ The de-randomizing of the naive randomized Max-Sat into a greedy
algorithm
@ Return to some previous topics
@ Greedy and local search algorithms for k + 1 clawfree graphs.

17

Set cover IP/LP for Weighted Set Cover and
randomized rounding

There is a very natural and efficient greedy algorithm for solving the
weighted set cover problem with approximation H,; where
d = max;|S;|. What would you try?

Recall that O(H,,) = O(log m), where m is the size of the universe.

But we want to use this problem to give a final example of IP and
randomized rounding.

Note that in the randomized Max-Sat algorithms, we never had to
worry about whether or not a solution was feasible since every truth
assignment is feasible. The only issue was the approximation ratio.

The following randomized algorithm will with high probability produce
a cover that is within a factor O(Hy) = O(log m) of the optimum.

This is also an opportunity to (re)introduce a little more probability.

3/17

The IP/LP randomized rounding

An IP formulation of weighted Set Cover

i=1

s.t. Z xi >1 foreachj=1,....m
i:jES;
x; € {0,1} foreachi=1,...,n

@ We relax this 0/1 IP by replacing the integrality constraints
x; € {0,1} by the following constraints:
0 < x foreachi=1,...,n
@ We solve this LP and find an optimal solution {x;,...,x}}.
@ We know x;* < 1 since in an optimal solution, each x;" is at most 1.

@ Thus, we can treat the x; values as probabilities and choose S; (to be
in our set cover) with probability x;.

Some comments on this randomized rounding

@ This is a covering problem and the sets produced by randomized
rounding will most likely not be a cover.

@ So we will have to repeat this process enough times to have a good
probability that all elements are covered.

@ We will next show:

This randomized rounding algorithm with high probability produces a
cover whose cost is within a factor O(log m) of the optimum. J

The analysis

@ It is easy to calculate the expected cost of the “partial cover’ C’ of
sets selected by the LP optimum.

@ Namely,

E[cost(C")] = wi - P[S; is chosen] =)~ wix} = OPT-LP

@ Now we need to calculate the probability that a given u € U is not
covered.

@ Let's say that u occurs in sets Si,...,Sk. The LP solution must
satisfy the constraint:
S sz

i u€es;

6/17

The analysis continued

@ Under this constraint, we can maximize the probability that u is not
covered by x* =1/k for 1 <i < k. Thus,

. 1\ 1
P[u is not covered | < (1 — p < -
e

@ Suppose now that we run the same randomized rounding algorithm
c¢In m times, where m = |U|, for some constant c. On each iteration,
add sets (given by the rounded LP) to the set cover.

@ While we may be adding the same set many times (and hence
overcounting),
the cost of the “cover” < (cInm) - OPT-LP.

. 1 clnm 1\°€
P[u is not covered | < | = == .
e m

@ Thus,

Finishing the analysis

The union bound
Let Ri,..., Rm be a set of random events with P[R;] < p;. Then

IP[at least one Rj occurs | < p1 + ...+ pm

@ Let R; be the event that element j is not covered. Then by the union
bound,

1 c 1 c—1
P[some u € U is not covered | < |U] <> = ()
m m
@ Using the Markov inequality we can show that the expected cost is
within O(log m) - OPT-LP with good probability. Hence, with good
probability we get a cover with cost O(log m) - OPT-LP.

@ This certainly shows that with good probability we get a cover with
cost O(log m) - OPT since OPT-LP < OPT.

De-randomizing the naive Max-Sat algorithm

We recall the naive randomized algorithm that we used for the Exact
Weighted Max-k-Sat problem.

In that algoirhtm we randomly and indepedently set each
propositional variable x; so that P[x; = true] = P[x; = false] = 3.

: .. ok
The expected weight of the solution is 22k1 Zj w;.

By using the method of conditional expectations, the algorithm can
be de-randomized.

@ We wish to make this more explicit.

17

Johnson’s algorithm is the derandomized algorithm

@ Yannakakis [1994] presented the naive algorithm and showed that
Johnson's algorithm is the derandomized naive algorithm.

@ Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson's algorithm is at best %

» For example, consider the 2-CNF F = (xV ¥) A (X V y) A ¥ when
variable x is first set to true.

@ Chen, Friesen, Zheng [1999] showed that Johnson's algorithm
achieves approximation ratio % for arbitrary weighted Max-Sat.

@ For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is 0.797 (resp. 0.931) using semi-definite
programming and randomized rounding.

10/17

Understanding Johnson’s algorithm as an online
greedy algorithm

@ The randomized algorithm (and hence its de-randomized counterpart)
is an online algorithm in the sense that we can set the variables in any
order.

» Can view this as an online algorithm where the algorithm will set the
variables in the order given without full knowledge of the entire formula.

@ To make things a little more precise, we will say that a propositional
variable is represented by the names of the clauses in which it appears
positively and the names of the clauses in which it appears negatively.

@ In addition, we specify the number of literals in each of these clauses.

11/17

Johnson’s algorithm continued

@ The method of conditional expectations tell us that

1 1
E[WF] = 5 E[WF ’ X1 = true] + 5 E[WF ’ X1 = false]

@ Therefore at least one of these two assignments to x; must gives the
desired expectation.

o Important observation: We can decide which assignment of x; by
computing the expectations knowing the sign of x; and number of
literals in each clause to which it belongs. But is there a more
efficient way to do this and one that does not involve looking at the
entire formula?

12 /17

Johnson’s algorithm continued

@ Let's see more explicitly how to set each variable x;.

@ Let's say (without loss of generality by renaming) that x; occurs
positively in some clause C; in which there are k; literals.

@ We consider the expected weight to be lost from clause C; if we set
the variable false. Namely, we will remove x; from C; and therefore
will lose w; L since we will be decreasing the expected weight of that

J 2%
ki—1
-1
2k~

2ki—1
clause from w; == to w;
2%

@ Of course, if we set x; = true, then we have satisfied C; and no longer
need to consider that clause.

@ We then sum these loses for each clause in which x; occurs for each
of the two possible truth values and take the best choice.

13 /17

Johnson’s Max-Sat Algorithm [1974]

For all clauses C;, let w/ := w;/(2/¢1)
Let L be the set of clauses in F and X the set of variables
For x € X (or until L empty)
Let P ={C; € L | x occurs positively in C;}
Let N = {C; € L | x occurs negatively in G}
> cepW =2 cen W)
% that is, we have more to lose setting x := false

X = true

Li=L—P

Forall C, ¢ N, w/:=2w/ End For
Else

x:=false;L:=L— N
For all C, € P, w/:=2w End For
End If
Delete x from X
End For

14 /17

Returning to some previous topics

@ We will spend the remaining lectures reviewing some previous topics
and, if time permits, add some additional material (but which will not
be part of the test/exam material).

@ We will start by introducing the following optimization problem:

The weighted set packing problem
@ As in the set cover problem, we are given a collection of sets

C={S51, Sz, ...,Sn} over a universe U = {e1, e, ...,en} and
w; = w(S;).

@ Goal: Choose a subcollection C’ of disjoint sets so as to maximize
dlisect Wi

@ When the size of the sets S; is restricted such that |S;| < k we call
this the k-set packing problem.

15 /17

Set packing (SP) as an MIS problem

@ The graph theoretic interpretation of the above problem is as follows:
Given a set packing instance define graph G = (V/, E) with
V = {51, S, ... Sn} and E = {(S,‘, SJ)|5, mSJ #+ Q}.

@ The (weighted) set packing problem becomes the (weighted)
maximum independent set (W)MIS problem on this graph.

o Note: This is another example of a polynomial time transformation:
SP <, MIS.

@ Given an MIS problem, interpreting it as a set packing problem is also
quite straightforward.
> The set of elements U = e;, e, ..., e, consist of the edges of the
graph G = (V, E).
» The collection of sets S; for 1 < i < |V|(= n) is given by the adjacency
list of the vertices.
» Note that in this case, m < n? and |S;| < n.

@ That is, this second transformation shows that MIS <, SP.

16 /17

Brief discussion of randomized polynomial time
complexity classes

@ /PP is a randomized “0-sided error” analogue of P, always giving the
correct answer (for a decision problem L € ZPP) but running in
expected polynomial time (rather than deterministic polynomial time).

@ The randomized algorithm given for the symbolic determinant
problem (and more generally for testing polynomial identities) is a
“1-sided polynomial time randomized algorithm™ always halting in
polynomial time but possibly making an error (on one side) with
sufficiently low probability. Such algorithms define the class RP.

@ Not hard to see that ZPP = RP N coRP and ZPP C RP C NP.

@ There is also a 2-sided error analogoue complexity class called BPP.

17 /17

