
CSC 373: Algorithm Design and Analysis
Lecture 26

Allan Borodin

March 22, 2013

1 / 17

Announcements and Outline

Announcements

Lecture this Friday; slower pace for rest of term.

Next week in tutorial, we will go over all the basic probability
concepts that are needed for this part of the course.

There are many texts which will have a short section on basic
probability concepts; for example, see section 13.12 of the Kleinber
and Tardos text.

Today’s outline

Finish up weighted set cover with randomized rounding

The de-randomizing of the naive randomized Max-Sat into a greedy
algorithm

Return to some previous topics

Greedy and local search algorithms for k + 1 clawfree graphs.

2 / 17

Set cover IP/LP for Weighted Set Cover and
randomized rounding

There is a very natural and efficient greedy algorithm for solving the
weighted set cover problem with approximation Hd where
d = maxi |Si |. What would you try?

Recall that O(Hm) = O(logm), where m is the size of the universe.

But we want to use this problem to give a final example of IP and
randomized rounding.

Note that in the randomized Max-Sat algorithms, we never had to
worry about whether or not a solution was feasible since every truth
assignment is feasible. The only issue was the approximation ratio.

The following randomized algorithm will with high probability produce
a cover that is within a factor O(Hd) = O(logm) of the optimum.

This is also an opportunity to (re)introduce a little more probability.
3 / 17

The IP/LP randomized rounding

An IP formulation of weighted Set Cover

minimize
n∑

i=1

wixi

s.t.
∑

i : j∈Si

xi ≥ 1 for each j = 1, . . . ,m

xi ∈ {0, 1} for each i = 1, . . . , n

We relax this 0/1 IP by replacing the integrality constraints
xi ∈ {0, 1} by the following constraints:

0 ≤ xi for each i = 1, . . . , n

We solve this LP and find an optimal solution {x∗1 , . . . , x∗n}.
We know x∗i ≤ 1 since in an optimal solution, each x∗i is at most 1.

Thus, we can treat the x∗i values as probabilities and choose Si (to be
in our set cover) with probability x∗i .

4 / 17

Some comments on this randomized rounding

This is a covering problem and the sets produced by randomized
rounding will most likely not be a cover.

So we will have to repeat this process enough times to have a good
probability that all elements are covered.

We will next show:

This randomized rounding algorithm with high probability produces a
cover whose cost is within a factor O(logm) of the optimum.

5 / 17

The analysis

It is easy to calculate the expected cost of the “partial cover” C ′ of
sets selected by the LP optimum.

Namely,

E[cost(C ′)] =
∑

wi · P[Si is chosen] =
∑

wix
∗
i = OPT-LP

Now we need to calculate the probability that a given u ∈ U is not
covered.

Let’s say that u occurs in sets S1, . . . ,Sk . The LP solution must
satisfy the constraint: ∑

i : u∈Si

x∗i ≥ 1

6 / 17

The analysis continued

Under this constraint, we can maximize the probability that u is not
covered by x∗i = 1/k for 1 ≤ i ≤ k . Thus,

P[u is not covered] ≤
(

1− 1

k

)k

≤ 1

e

Suppose now that we run the same randomized rounding algorithm
c lnm times, where m = |U|, for some constant c . On each iteration,
add sets (given by the rounded LP) to the set cover.

While we may be adding the same set many times (and hence
overcounting),

the cost of the “cover” ≤ (c lnm) · OPT-LP.

Thus,

P[u is not covered] ≤
(

1

e

)c lnm

=

(
1

m

)c

.

7 / 17

Finishing the analysis

The union bound

Let R1, . . . ,Rm be a set of random events with P[Rj] ≤ pj . Then

P[at least one Rj occurs] ≤ p1 + . . . + pm

Let Rj be the event that element j is not covered. Then by the union
bound,

P[some u ∈ U is not covered] ≤ |U|
(

1

m

)c

=

(
1

m

)c−1

Using the Markov inequality we can show that the expected cost is
within O(logm) · OPT-LP with good probability. Hence, with good
probability we get a cover with cost O(logm) · OPT-LP.

This certainly shows that with good probability we get a cover with
cost O(logm) · OPT since OPT-LP ≤ OPT.

8 / 17

De-randomizing the naive Max-Sat algorithm

We recall the naive randomized algorithm that we used for the Exact
Weighted Max-k-Sat problem.

In that algoirhtm we randomly and indepedently set each
propositional variable xi so that P[xi = true] = P[xi = false] = 1

2 .

The expected weight of the solution is 2k−1
2k

∑
j wj .

By using the method of conditional expectations, the algorithm can
be de-randomized.

We wish to make this more explicit.

9 / 17

Johnson’s algorithm is the derandomized algorithm

Yannakakis [1994] presented the naive algorithm and showed that
Johnson’s algorithm is the derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 .
I For example, consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when

variable x is first set to true.

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is 0.797 (resp. 0.931) using semi-definite
programming and randomized rounding.

10 / 17

Understanding Johnson’s algorithm as an online
greedy algorithm

The randomized algorithm (and hence its de-randomized counterpart)
is an online algorithm in the sense that we can set the variables in any
order.

I Can view this as an online algorithm where the algorithm will set the
variables in the order given without full knowledge of the entire formula.

To make things a little more precise, we will say that a propositional
variable is represented by the names of the clauses in which it appears
positively and the names of the clauses in which it appears negatively.

In addition, we specify the number of literals in each of these clauses.

11 / 17

Johnson’s algorithm continued

The method of conditional expectations tell us that

E[WF] =
1

2
· E[WF | x1 = true] +

1

2
· E[WF | x1 = false]

Therefore at least one of these two assignments to x1 must gives the
desired expectation.

Important observation: We can decide which assignment of x1 by
computing the expectations knowing the sign of x1 and number of
literals in each clause to which it belongs. But is there a more
efficient way to do this and one that does not involve looking at the
entire formula?

12 / 17

Johnson’s algorithm continued

Let’s see more explicitly how to set each variable xi .

Let’s say (without loss of generality by renaming) that xi occurs
positively in some clause Cj in which there are kj literals.

We consider the expected weight to be lost from clause Cj if we set
the variable false. Namely, we will remove xi from Cj and therefore
will lose wj

1

2
kj

since we will be decreasing the expected weight of that

clause from wj
2
kj−1
2
kj

to wj
2
kj−1−1
2
kj−1 .

Of course, if we set xi = true, then we have satisfied Cj and no longer
need to consider that clause.

We then sum these loses for each clause in which xi occurs for each
of the two possible truth values and take the best choice.

13 / 17

Johnson’s Max-Sat Algorithm [1974]

For all clauses Ci , let w ′i := wi/(2|Ci |)
Let L be the set of clauses in F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L | x occurs positively in Ci}
Let N = {Cj ∈ L | x occurs negatively in Cj}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
% that is, we have more to lose setting x := false

x := true
L := L− P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L− N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

14 / 17

Returning to some previous topics

We will spend the remaining lectures reviewing some previous topics
and, if time permits, add some additional material (but which will not
be part of the test/exam material).

We will start by introducing the following optimization problem:

The weighted set packing problem

As in the set cover problem, we are given a collection of sets
C = {S1, S2, . . . ,Sn} over a universe U = {e1, e2, . . . , em} and
wi = w(Si).

Goal: Choose a subcollection C′ of disjoint sets so as to maximize∑
i :Si∈C ′ wi .

When the size of the sets Si is restricted such that |Si | ≤ k we call
this the k-set packing problem.

15 / 17

Set packing (SP) as an MIS problem

The graph theoretic interpretation of the above problem is as follows:
Given a set packing instance define graph G = (V ,E) with
V = {S1, S2, . . . Sn} and E = {(Si , Sj)|Si

⋂
Sj 6= ∅}.

The (weighted) set packing problem becomes the (weighted)
maximum independent set (W)MIS problem on this graph.

Note: This is another example of a polynomial time transformation:

SP ≤p MIS.

Given an MIS problem, interpreting it as a set packing problem is also
quite straightforward.

I The set of elements U = e1, e2, . . . , em consist of the edges of the
graph G = (V ,E).

I The collection of sets Si for 1 ≤ i ≤ |V |(= n) is given by the adjacency
list of the vertices.

I Note that in this case, m ≤ n2 and |Si | ≤ n.

That is, this second transformation shows that MIS ≤p SP.

16 / 17

Brief discussion of randomized polynomial time
complexity classes

ZPP is a randomized “0-sided error” analogue of P, always giving the
correct answer (for a decision problem L ∈ ZPP) but running in
expected polynomial time (rather than deterministic polynomial time).

The randomized algorithm given for the symbolic determinant
problem (and more generally for testing polynomial identities) is a
“1-sided polynomial time randomized algorithm” always halting in
polynomial time but possibly making an error (on one side) with
sufficiently low probability. Such algorithms define the class RP.

Not hard to see that ZPP = RP ∩ coRP and ZPP ⊆ RP ⊆ NP.

There is also a 2-sided error analogoue complexity class called BPP.

17 / 17

