CSC 373: Algorithm Design and Analysis Lecture 26

Allan Borodin

March 22, 2013

Announcements and Outline

Announcements

- Lecture this Friday; slower pace for rest of term.
- Next week in tutorial, we will go over all the basic probability concepts that are needed for this part of the course.
- There are many texts which will have a short section on basic probability concepts; for example, see section 13.12 of the Kleinber and Tardos text.

Today's outline

- Finish up weighted set cover with randomized rounding
- The de-randomizing of the naive randomized Max-Sat into a greedy algorithm
- Return to some previous topics
- Greedy and local search algorithms for $k+1$ clawfree graphs.

Set cover IP/LP for Weighted Set Cover and randomized rounding

- There is a very natural and efficient greedy algorithm for solving the weighted set cover problem with approximation H_{d} where $d=\max _{i}\left|S_{i}\right|$. What would you try?
- Recall that $O\left(H_{m}\right)=O(\log m)$, where m is the size of the universe.
- But we want to use this problem to give a final example of IP and randomized rounding.
- Note that in the randomized Max-Sat algorithms, we never had to worry about whether or not a solution was feasible since every truth assignment is feasible. The only issue was the approximation ratio.
- The following randomized algorithm will with high probability produce a cover that is within a factor $O\left(H_{d}\right)=O(\log m)$ of the optimum.
- This is also an opportunity to (re)introduce a little more probability.

The IP/LP randomized rounding

An IP formulation of weighted Set Cover

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{i=1}^{n} w_{i} x_{i} & \\
\text { s.t. } & \sum_{i: j \in S_{i}} x_{i} \geq 1 & \text { for each } j=1, \ldots, m \\
& x_{i} \in\{0,1\} & \text { for each } i=1, \ldots, n
\end{array}
$$

- We relax this $0 / 1 \mathrm{IP}$ by replacing the integrality constraints $x_{i} \in\{0,1\}$ by the following constraints:

$$
0 \leq x_{i} \quad \text { for each } i=1, \ldots, n
$$

- We solve this LP and find an optimal solution $\left\{x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.
- We know $x_{i}^{*} \leq 1$ since in an optimal solution, each x_{i}^{*} is at most 1 .
- Thus, we can treat the x_{i}^{*} values as probabilities and choose S_{i} (to be in our set cover) with probability x_{i}^{*}.

Some comments on this randomized rounding

- This is a covering problem and the sets produced by randomized rounding will most likely not be a cover.
- So we will have to repeat this process enough times to have a good probability that all elements are covered.
- We will next show:

This randomized rounding algorithm with high probability produces a cover whose cost is within a factor $O(\log m)$ of the optimum.

The analysis

- It is easy to calculate the expected cost of the "partial cover" C^{\prime} of sets selected by the LP optimum.
- Namely,

$$
\mathbb{E}\left[\operatorname{cost}\left(C^{\prime}\right)\right]=\sum w_{i} \cdot \mathbb{P}\left[S_{i} \text { is chosen }\right]=\sum w_{i} x_{i}^{*}=\text { OPT-LP }
$$

- Now we need to calculate the probability that a given $u \in U$ is not covered.
- Let's say that u occurs in sets S_{1}, \ldots, S_{k}. The LP solution must satisfy the constraint:

$$
\sum_{i: u \in S_{i}} x_{i}^{*} \geq 1
$$

The analysis continued

- Under this constraint, we can maximize the probability that u is not covered by $x_{i}^{*}=1 / k$ for $1 \leq i \leq k$. Thus,

$$
\mathbb{P}[u \text { is not covered }] \leq\left(1-\frac{1}{k}\right)^{k} \leq \frac{1}{e}
$$

- Suppose now that we run the same randomized rounding algorithm $c \ln m$ times, where $m=|U|$, for some constant c. On each iteration, add sets (given by the rounded LP) to the set cover.
- While we may be adding the same set many times (and hence overcounting),

$$
\text { the cost of the "cover" } \leq(c \ln m) \cdot \text { OPT-LP. }
$$

- Thus,

$$
\mathbb{P}[u \text { is not covered }] \leq\left(\frac{1}{e}\right)^{c \ln m}=\left(\frac{1}{m}\right)^{c}
$$

Finishing the analysis

The union bound

Let R_{1}, \ldots, R_{m} be a set of random events with $\mathbb{P}\left[R_{j}\right] \leq p_{j}$. Then

$$
\mathbb{P}\left[\text { at least one } R_{j} \text { occurs }\right] \leq p_{1}+\ldots+p_{m}
$$

- Let R_{j} be the event that element j is not covered. Then by the union bound,

$$
\mathbb{P}[\text { some } u \in U \text { is not covered }] \leq|U|\left(\frac{1}{m}\right)^{c}=\left(\frac{1}{m}\right)^{c-1}
$$

- Using the Markov inequality we can show that the expected cost is within $O(\log m) \cdot$ OPT-LP with good probability. Hence, with good probability we get a cover with cost $O(\log m) \cdot$ OPT-LP.
- This certainly shows that with good probability we get a cover with cost $O(\log m) \cdot$ OPT since OPT-LP \leq OPT.

De-randomizing the naive Max-Sat algorithm

- We recall the naive randomized algorithm that we used for the Exact Weighted Max-k-Sat problem.
- In that algoirhtm we randomly and indepedently set each propositional variable x_{i} so that $\mathbb{P}\left[x_{i}=\right.$ true $]=\mathbb{P}\left[x_{i}=f_{\text {alse }}\right]=\frac{1}{2}$.
- The expected weight of the solution is $\frac{2^{k}-1}{2^{k}} \sum_{j} w_{j}$.
- By using the method of conditional expectations, the algorithm can be de-randomized.
- We wish to make this more explicit.

Johnson's algorithm is the derandomized algorithm

- Yannakakis [1994] presented the naive algorithm and showed that Johnson's algorithm is the derandomized naive algorithm.
- Yannakakis also observed that for arbitrary Max-Sat, the approximation of Johnson's algorithm is at best $\frac{2}{3}$.
- For example, consider the 2-CNF $F=(x \vee \bar{y}) \wedge(\bar{x} \vee y) \wedge \bar{y}$ when variable x is first set to true.
- Chen, Friesen, Zheng [1999] showed that Johnson's algorithm achieves approximation ratio $\frac{2}{3}$ for arbitrary weighted Max-Sat.
- For arbitrary Max-Sat (resp. Max-2-Sat), the current best approximation ratio is 0.797 (resp. 0.931) using semi-definite programming and randomized rounding.

Understanding Johnson's algorithm as an online greedy algorithm

- The randomized algorithm (and hence its de-randomized counterpart) is an online algorithm in the sense that we can set the variables in any order.
- Can view this as an online algorithm where the algorithm will set the variables in the order given without full knowledge of the entire formula.
- To make things a little more precise, we will say that a propositional variable is represented by the names of the clauses in which it appears positively and the names of the clauses in which it appears negatively.
- In addition, we specify the number of literals in each of these clauses.

Johnson's algorithm continued

- The method of conditional expectations tell us that

$$
\mathbb{E}\left[W_{F}\right]=\frac{1}{2} \cdot \mathbb{E}\left[W_{F} \mid x_{1}=\text { true }\right]+\frac{1}{2} \cdot \mathbb{E}\left[W_{F} \mid x_{1}=\text { false }\right]
$$

- Therefore at least one of these two assignments to x_{1} must gives the desired expectation.
- Important observation: We can decide which assignment of x_{1} by computing the expectations knowing the sign of x_{1} and number of literals in each clause to which it belongs. But is there a more efficient way to do this and one that does not involve looking at the entire formula?

Johnson's algorithm continued

- Let's see more explicitly how to set each variable x_{i}.
- Let's say (without loss of generality by renaming) that x_{i} occurs positively in some clause C_{j} in which there are k_{j} literals.
- We consider the expected weight to be lost from clause C_{j} if we set the variable false. Namely, we will remove x_{i} from C_{j} and therefore will lose $w_{j} \frac{1}{2^{k_{j}}}$ since we will be decreasing the expected weight of that clause from $w_{j} \frac{2^{k_{j}}-1}{2^{k_{j}}}$ to $w_{j} \frac{2^{k_{j}-1}-1}{2^{k_{j}-1}}$.
- Of course, if we set $x_{i}=$ true, then we have satisfied C_{j} and no longer need to consider that clause.
- We then sum these loses for each clause in which x_{i} occurs for each of the two possible truth values and take the best choice.

Johnson's Max-Sat Algorithm [1974]

For all clauses C_{i}, let $w_{i}^{\prime}:=w_{i} /\left(2^{\left|C_{i}\right|}\right)$
Let L be the set of clauses in F and X the set of variables
For $x \in X$ (or until L empty)
Let $P=\left\{C_{i} \in L \mid x\right.$ occurs positively in $\left.C_{i}\right\}$
Let $N=\left\{C_{j} \in L \mid x\right.$ occurs negatively in $\left.C_{j}\right\}$
If $\sum c_{i \in P} w_{i}^{\prime} \geq \sum c_{j \in N} w_{j}^{\prime}$
\% that is, we have more to lose setting $x:=$ false
$x:=$ true
$L:=L-P$
For all $C_{r} \in N, \quad w_{r}^{\prime}:=2 w_{r}^{\prime} \quad$ End For
Else
$x:=$ false; $L:=L-N$
For all $C_{r} \in P, \quad w_{r}^{\prime}:=2 w_{r}^{\prime} \quad$ End For
End If
Delete x from X

End For

Returning to some previous topics

- We will spend the remaining lectures reviewing some previous topics and, if time permits, add some additional material (but which will not be part of the test/exam material).
- We will start by introducing the following optimization problem:

The weighted set packing problem

- As in the set cover problem, we are given a collection of sets $\mathcal{C}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ over a universe $U=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and $w_{i}=w\left(S_{i}\right)$.
- Goal: Choose a subcollection \mathcal{C}^{\prime} of disjoint sets so as to maximize $\sum_{i: S_{i} \in C^{\prime}} w_{i}$.
- When the size of the sets S_{i} is restricted such that $\left|S_{i}\right| \leq k$ we call this the k-set packing problem.

Set packing (SP) as an MIS problem

- The graph theoretic interpretation of the above problem is as follows: Given a set packing instance define graph $G=(V, E)$ with $V=\left\{S_{1}, S_{2}, \ldots S_{n}\right\}$ and $E=\left\{\left(S_{i}, S_{j}\right) \mid S_{i} \cap S_{j} \neq \varnothing\right\}$.
- The (weighted) set packing problem becomes the (weighted) maximum independent set (W)MIS problem on this graph.
- Note: This is another example of a polynomial time transformation:

$$
\mathrm{SP} \leq_{p} \mathrm{MIS}
$$

- Given an MIS problem, interpreting it as a set packing problem is also quite straightforward.
- The set of elements $U=e_{1}, e_{2}, \ldots, e_{m}$ consist of the edges of the graph $G=(V, E)$.
- The collection of sets S_{i} for $1 \leq i \leq|V|(=n)$ is given by the adjacency list of the vertices.
- Note that in this case, $m \leq n^{2}$ and $\left|S_{i}\right| \leq n$.
- That is, this second transformation shows that MIS \leq_{p} SP.

Brief discussion of randomized polynomial time complexity classes

- ZPP is a randomized "0-sided error" analogue of P , always giving the correct answer (for a decision problem $L \in Z P P$) but running in expected polynomial time (rather than deterministic polynomial time).
- The randomized algorithm given for the symbolic determinant problem (and more generally for testing polynomial identities) is a "1-sided polynomial time randomized algorithm" always halting in polynomial time but possibly making an error (on one side) with sufficiently low probability. Such algorithms define the class RP.
- Not hard to see that $Z P P=R P \cap$ coRP and $Z P P \subseteq R P \subseteq N P$.
- There is also a 2-sided error analogoue complexity class called BPP.

