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Announcements and Outline

Announcements

Lecture this Friday; slower pace for rest of term.

Next week in tutorial, we will go over all the basic probability
concepts that are needed for this part of the course.

There are many texts which will have a short section on basic
probability concepts; for example, see section 13.12 of the Kleinber
and Tardos text.

Today’s outline

Max-Sat as an IP

Randomized rounding

Set cover and randomized rounding
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Randomized rounding – The weighted Max-Sat
problem

The weighted Max-Sat problem

Given a CNF formula F = C1 ∧ C2 ∧ . . . ∧ Cm over a set of variables
x1, . . . , xn with clause Ci having weight Wi .

In contrast to Max-k-Sat and Exact Max-k-Sat, each clause can have
any number of literals.

Goal: is to find a truth assignment that maximizes that the total
weight of the satisfied clauses.
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The weighted Max-Sat problem as an IP

Let C+
j (resp C−j ) be the set of all variables occurring positively

(resp. negatively) in Cj .
I For example, if Cj = x1 ∨ x̄2 ∨ x3, then C+

j = {x1, x3} and C−
j = {x2}.

An IP formulation of weighted Max-Sat

maximize
m∑

j=1

Wjzj

s.t.
∑

xi∈C+
j

yi +
∑

xi∈C−
j

(1− yi ) ≥ zj for each j = 1, . . . ,m

zj , yj ∈ {0, 1} for each j = 1, . . . ,m

Intended meaning: zj = 1 indicates that clause Cj is satisfied; the
propositional variable xi is set true iff yi = 1

The LP relaxation is 0 ≤ yi ≤ 1 and 0 ≤ zj ≤ 1. Here we do want the
yi ≤ 1 and zj ≤ 1 constraints. Why?
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Randomized rounding the LP

Since we have forced our fractional solutions to be in [0, 1], we can
think of each fractional variable as a probability. Then we can do
randomized rounding.

Let
{y∗1 , . . . , y∗m, z∗1 , . . . , , z∗m}

be an optimal LP solution so that the LP-OPT =
∑

j Wjz
∗
j .

We set ŷi = 1 with probability y∗i to obtain an integral solution.

We do not need to round the z∗j variables since the desired solution is
a truth assignment (which will in turn determine which clauses are
satisfied).

Note that every rounded solution is a solution (i.e. truth assignment)
but we will need to use properties of the LP solution to derive an
approximation ratio.
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The analysis

Let Cj be a clause with k literals and by renaming we can assume
that Cj = (x1 ∨ x2 ∨ . . . ∨ xk).

Let bk = 1−
(
1− 1

k

)k
. We will show (next 3 slides) that

P
[
Cj is satisfied in the rounded solution

]
≥ z∗j bk

By linearity of expectations, the contribution (in expectation) to the
rounded solution of a clause Cj having k literals is then at least
Wjz

∗
j bk . (Recall that the LP-OPT =

∑
j Wjz

∗
j .)

Since (1− 1/k)k < 1/e (and converges to 1/e when k →∞), the
approx. ratio is at least 1− 1/e > 0.632.

Note: We will need one further idea to obtain a 3/4 approx. ratio.
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Arithmetic-geometric mean inequality

In the analysis, we will need to make use of the arithmetic geometric
mean inequality which states that for non negative real values ai :

a1 + a2 + . . . + ak
k

≥ (a1 · a2 · . . . · ak)1/k

Or equivalently

(
a1 + a2 + . . . + ak

k

)k

≥ (a1 · a2 · . . . · ak)
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Analysis continued: check each setp carefully

Let Cj be a clause with k literals and by renaming assume
Cj = (x1 ∨ x2 ∨ . . . ∨ xk).

Cj is satisfied if not all of the yi are set to 0 (after setting yi = 1 with
probability y∗i ).

Thus, the probability that Cj is satisfied is 1−∏i (1− y∗i ). By the
arithmetic-geometric mean inequality, this probability is at least

1−
(∑k

i=1(1− y∗i )

k

)k

= 1−
(

1−
∑k

i=1 y
∗
i

k

)k

≥ 1−
(

1−
z∗j
k

)k

The inequality is by the LP constraint:
∑

yi∈C+
j

yi +
∑

yi∈C−
j

(1− yi ) ≥ zj

Note: Keep in mind the renaming making literals positive, so that we
just have

∑
yi∈C+

j
yi .

Hence it follows that y∗1 + . . . + y∗k ≥ z∗j .
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End of analysis for Max-Sat

Define g(z) = 1−
(
1− z

k

)k
, then g(z) is a concave function with

g(0) = 0 and g(1) = bk .

16.3 Dealing with small clauses via LP-rounding 135

Proof: We may assume w.l.o.g. that all literals in c appear nonnegated
(if xi appears negated, we can replace xi with xi throughout f and modify
LP (16.2) accordingly without affecting z∗

c or Wc). Further, by renaming
variables, we may assume c = (x1 ∨ . . . ∨ xk).

Clause c is satisfied if x1, . . . , xk are not all set to False. The probability
of this event is

1 −
k∏

i=1

(1 − yi) ≥ 1 −
(∑k

i=1(1 − yi)

k

)k

= 1 −
(

1 −
∑k

i=1 yi

k

)k

≥ 1 −
(

1 − z∗
c

k

)k

,

where the first inequality follows from the arithmetic-geometric mean in-
equality which states that for nonnegative numbers a1, . . . , ak,

a1 + . . . + ak

k
≥ k

√
a1 × . . . × ak.

The second inequality uses the constraint in LP (16.2) that y1 + . . .+yk ≥ zc.

0 1 z

g(z)

Define function g by:

g(z) = 1 −
(
1 − z

k

)k

.

This is a concave function with g(0) = 0 and g(1) = βk. Therefore, for
z ∈ [0, 1], g(z) ≥ βkz. Hence, Pr[c is satisfied] ≥ βkz∗

c . The lemma follows. !

Notice that βk is a decreasing function of k. Thus, if all clauses are of size
at most k,

E[W ] =
∑

c∈C
E[Wc] ≥ βk

∑

c∈C
wcz

∗
c = βkOPTf ≥ βkOPT,

By concavity, g(z) ≥ bkz for all z ∈ [0, 1]. In particular,
g(z∗) ≥ bkz

∗
j .

Hence if Cj is a clause with k literals, then the

P
[
Cj is satisfied in the rounded solution

]
≥ z∗j bk
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Some concluding remarks on this Max-Sat algorithm

Like the more naive randomized algorithm used for exact Max-k-Sat,
this algorithm can also be derandomized (by solving at most 2n LPs)
to obtain a (1− 1/e) approximation.

Since the naive algorithm is good for big k clauses and the (1− 1/e)
approximation algorithm is good for small k clauses, it turns out that
by taking the best solution of these two deterministic algorithms, we
get a 3

4 approximation.

This is close to the best known approximation ratio for Max-Sat.
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The Set Cover problem

The Set Cover problem

Given a set of elements U = {1, 2, . . . ,m} (called the universe) and n
sets S = {S1,S2, . . . ,Sn}, whose union comprises the universe U.

A subset S ′ ⊆ S is a cover of U if its union contains all elements of U.

Goal: Find a smallest cover C ⊆ S .

Example

Assume we are given the universe U = {1, 2, 3, 4, 5} and sets

S =
{
{1, 2, 3}, {2, 4}, {3, 4}, {2, 4, 5}

}
.

Clearly the union of all the sets in S contains all elements in U.

However, we can cover all of the elements with the following, smaller
number of sets

{
{1, 2, 3}, {2, 4, 5}

}
.
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The weighted Set Cover problem

The weighted Set Cover problem

Given a set of elements U = {1, 2, . . . ,m} (called the universe) and n
sets S = {S1,S2, . . . ,Sn}, whose union comprises the universe U.

Each set Si now has a weight wi

Goal: Find a cover C ⊆ S with minimum total weight.
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Set cover IP/LP randomized rounding

There is a very natural and efficient greedy algorithm for solving the
weighted set cover problem with approximation Hd where
d = maxi |Si |.

Recall that O(Hm) = O(logm), where m is the size of the universe.

But we want to use this problem to give a final example of IP and
randomized rounding.

Note that in the randomized Max-Sat algorithms, we never had to
worry about whether or not a solution was feasible since every truth
assignment is feasible. The only issue was the approximation ratio.

The following randomized algorithm will with high probability produce
a cover that is within a factor O(Hd) = O(logm) of the optimum.

This is also an opportunity to (re)introduce a little more probability.
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The IP/LP randomized rounding

An IP formulation of weighted Set Cover

minimize
n∑

i=1

wixi

s.t.
∑

i : j∈Si

xi ≥ 1 for each j = 1, . . . ,m

xi ∈ {0, 1} for each i = 1, . . . , n

We relax this 0/1 IP by replacing the integrality constraints
xi ∈ {0, 1} by the following constraints:

0 ≤ xi for each i = 1, . . . , n

We solve this LP and find an optimal solution {x∗1 , . . . , x∗n}.
We know x∗i ≤ 1 since in an optimal solution, each x∗i is at most 1.

Thus, we can treat the x∗i values as probabilities and choose Si (to be
in our set cover) with probability x∗i .
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Some comments on this randomized rounding

This is a covering problem and the sets produced by randomized
rounding will most likely not be a cover.

So we will have to repeat this process enough times to have a good
probability that all elements are covered.

We will next show:

This randomized rounding algorithm with high probability produces a
cover whose cost is within a factor O(logm) of the optimum.
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The analysis

It is easy to calculate the expected cost of the “partial cover” C ′ of
sets selected by the LP optimum.

Namely,

E[cost(C ′)] =
∑

wi · P[Si is chosen] =
∑

wix
∗
i = OPT-LP

Now we need to calculate the probability that a given u ∈ U is not
covered.

Let’s say that u occurs in sets S1, . . . ,Sk . The LP solution must
satisfy the constraint: ∑

i : u∈Si

x∗i ≥ 1
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The analysis continued

Under this constraint, we can minimize the probability that u is
covered by x∗i = 1/k for 1 ≤ i ≤ k . Thus,

P[ u is not covered ] ≤
(

1− 1

k

)k

≤ 1

e

Suppose now that we run the same randomized rounding algorithm
c lnm times, where m = |U|, for some constant c . On each iteration,
add sets (given by the rounded LP) to the set cover.

While we may be adding the same set many times (and hence
overcounting),

the cost of the “cover” ≤ (c lnm) · OPT-LP.

Thus,

P[ u is not covered ] ≤
(

1

e

)c lnm

=

(
1

m

)c

.
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Finishing the analysis

The union bound

Let R1, . . . ,Rm be a set of random events with P[Rj ] ≤ pj . Then

P[ at least one Rj occurs ] ≤ p1 + . . . + pm

Let Rj be the event that element j is not covered. Then by the union
bound,

P[ some u ∈ U is not covered ] ≤ |U|
(

1

m

)c

=

(
1

m

)c−1

Using the Markov inequality we can show that the expected cost is
within O(logm) · OPT-LP with good probability. Hence, with good
probability we get a cover with cost O(logm) · OPT-LP.

This certainly shows that with good probability we get a cover with
cost O(logm) · OPT since OPT-LP ≤ OPT.
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