CSC 373: Algorithm Design and Analysis Lecture 25

Allan Borodin

March 20, 2013

Announcements and Outline

Announcements

- Lecture this Friday; slower pace for rest of term.
- Next week in tutorial, we will go over all the basic probability concepts that are needed for this part of the course.
- There are many texts which will have a short section on basic probability concepts; for example, see section 13.12 of the Kleinber and Tardos text.

Today's outline

- Max-Sat as an IP
- Randomized rounding
- Set cover and randomized rounding

Randomized rounding – The weighted Max-Sat problem

The weighted Max-Sat problem

- Given a CNF formula $F = C_1 \wedge C_2 \wedge \ldots \wedge C_m$ over a set of variables x_1, \ldots, x_n with clause C_i having weight W_i .
- In contrast to Max-k-Sat and Exact Max-k-Sat, each clause can have any number of literals.
- Goal: is to find a truth assignment that maximizes that the total weight of the satisfied clauses.

The weighted Max-Sat problem as an IP

• Let C_j^+ (resp C_j^-) be the set of all variables occurring positively (resp. negatively) in C_j .

• For example, if $C_j = x_1 \lor \bar{x}_2 \lor x_3$, then $C_j^+ = \{x_1, x_3\}$ and $C_j^- = \{x_2\}$.

An IP formulation of weighted Max-Sat

$$\begin{array}{ll} \text{naximize} & \sum_{j=1}^{m} W_j z_j \\ \text{s.t.} & \sum_{x_i \in \mathcal{C}_j^+} y_i + \sum_{x_i \in \mathcal{C}_j^-} (1 - y_i) \ge z_j & \text{for each } j = 1, \dots, m \\ & z_j, y_j \in \{0, 1\} & \text{for each } j = 1, \dots, m \end{array}$$

- Intended meaning: $z_j = 1$ indicates that clause C_j is satisfied; the propositional variable x_i is set true iff $y_i = 1$
- The LP relaxation is $0 \le y_i \le 1$ and $0 \le z_j \le 1$. Here we do want the $y_i \le 1$ and $z_j \le 1$ constraints. Why?

Randomized rounding the LP

- Since we have forced our fractional solutions to be in [0, 1], we can think of each fractional variable as a probability. Then we can do randomized rounding.
- Let

$$\{y_1^*, \ldots, y_m^*, z_1^*, \ldots, z_m^*\}$$

be an optimal LP solution so that the LP-OPT $= \sum_{j} W_{j} z_{j}^{*}$.

- We set $\hat{y}_i = 1$ with probability y_i^* to obtain an integral solution.
- We do not need to round the z_j^* variables since the desired solution is a truth assignment (which will in turn determine which clauses are satisfied).
- Note that every rounded solution is a solution (i.e. truth assignment) but we will need to use properties of the LP solution to derive an approximation ratio.

The analysis

- Let C_j be a clause with k literals and by renaming we can assume that C_j = (x₁ ∨ x₂ ∨ ... ∨ x_k).
- Let $b_k = 1 (1 \frac{1}{k})^k$. We will show (next 3 slides) that $\mathbb{P}[C_j \text{ is satisfied in the rounded solution}] \ge z_j^* b_k$
- By linearity of expectations, the contribution (in expectation) to the rounded solution of a clause C_j having k literals is then at least $W_j z_j^* b_k$. (Recall that the LP-OPT = $\sum_j W_j z_j^*$.)
- Since $(1 1/k)^k < 1/e$ (and converges to 1/e when $k \to \infty$), the approx. ratio is at least 1 1/e > 0.632.
- Note: We will need one further idea to obtain a 3/4 approx. ratio.

Arithmetic-geometric mean inequality

 In the analysis, we will need to make use of the arithmetic geometric mean inequality which states that for non negative real values a_i:

$$rac{\mathsf{a}_1+\mathsf{a}_2+\ldots+\mathsf{a}_k}{k} \geq (\mathsf{a}_1\cdot\mathsf{a}_2\cdot\ldots\cdot\mathsf{a}_k)^{1/k}$$

• Or equivalently

$$\left(rac{a_1+a_2+\ldots+a_k}{k}
ight)^k \geq (a_1\cdot a_2\cdot \ldots \cdot a_k)$$

Analysis continued: check each setp carefully

- Let C_j be a clause with k literals and by renaming assume $C_j = (x_1 \lor x_2 \lor \ldots \lor x_k).$
- C_j is satisfied if not all of the y_i are set to 0 (after setting y_i = 1 with probability y_i^{*}).
- Thus, the probability that C_j is satisfied is $1 \prod_i (1 y_i^*)$. By the arithmetic-geometric mean inequality, this probability is at least

$$1 - \left(\frac{\sum_{i=1}^{k} (1 - y_i^*)}{k}\right)^k = 1 - \left(1 - \frac{\sum_{i=1}^{k} y_i^*}{k}\right)^k \ge 1 - \left(1 - \frac{z_j^*}{k}\right)^k$$

- The inequality is by the LP constraint: $\sum_{y_i \in C_j^+} y_i + \sum_{y_i \in C_j^-} (1-y_i) \ge z_j$
- Note: Keep in mind the renaming making literals positive, so that we just have $\sum_{y_i \in C_i^+} y_i$.
- Hence it follows that $y_1^* + \ldots + y_k^* \ge z_j^*$.

End of analysis for Max-Sat

• By concavity, $g(z) \ge b_k z$ for all $z \in [0, 1]$. In particular, $g(z^*) \ge b_k z_j^*$.

• Hence if C_j is a clause with k literals, then the $\mathbb{P}[C_j \text{ is satisfied in the rounded solution}] \ge z_j^* b_k$

Some concluding remarks on this Max-Sat algorithm

• Like the more naive randomized algorithm used for exact Max-k-Sat, this algorithm can also be derandomized (by solving at most 2n LPs) to obtain a (1 - 1/e) approximation.

• Since the naive algorithm is good for big k clauses and the (1 - 1/e) approximation algorithm is good for small k clauses, it turns out that by taking the best solution of these two deterministic algorithms, we get a $\frac{3}{4}$ approximation.

• This is close to the best known approximation ratio for Max-Sat.

The Set Cover problem

The Set Cover problem

- Given a set of elements $U = \{1, 2, ..., m\}$ (called the universe) and n sets $S = \{S_1, S_2, ..., S_n\}$, whose union comprises the universe U.
- A subset $S' \subseteq S$ is a cover of U if its union contains all elements of U.
- Goal: Find a smallest cover $C \subseteq S$.

Example

• Assume we are given the universe $U = \{1, 2, 3, 4, 5\}$ and sets

$$S = \left\{ \{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{2, 4, 5\} \right\}.$$

- Clearly the union of all the sets in S contains all elements in U.
- However, we can cover all of the elements with the following, smaller number of sets {{1,2,3}, {2,4,5}}.

The weighted Set Cover problem

The weighted Set Cover problem

- Given a set of elements U = {1, 2, ..., m} (called the universe) and n sets S = {S₁, S₂, ..., S_n}, whose union comprises the universe U.
- Each set S_i now has a weight w_i
- **Goal:** Find a cover $C \subseteq S$ with minimum total weight.

Set cover IP/LP randomized rounding

- There is a very natural and efficient greedy algorithm for solving the weighted set cover problem with approximation H_d where $d = max_i|S_i|$.
- Recall that $O(H_m) = O(\log m)$, where m is the size of the universe.
- But we want to use this problem to give a final example of IP and randomized rounding.
- Note that in the randomized Max-Sat algorithms, we never had to worry about whether or not a solution was feasible since every truth assignment is feasible. The only issue was the approximation ratio.
- The following randomized algorithm will with high probability produce a cover that is within a factor $O(H_d) = O(\log m)$ of the optimum.
- This is also an opportunity to (re)introduce a little more probability.

The IP/LP randomized rounding

An IP formulation of weighted Set Cover

$$\begin{array}{ll} \mbox{minimize} & \sum_{i=1}^{n} w_i x_i \\ \mbox{s.t.} & \sum_{i: j \in S_i} x_i \geq 1 \\ & x_i \in \{0, 1\} \end{array} \qquad \qquad \mbox{for each } j = 1, \dots, m \\ \mbox{for each } i = 1, \dots, n \end{array}$$

We relax this 0/1 IP by replacing the integrality constraints x_i ∈ {0,1} by the following constraints:

$$0 \le x_i$$
 for each $i = 1, \ldots, n$

- We solve this LP and find an optimal solution $\{x_1^*, \ldots, x_n^*\}$.
- We know $x_i^* \leq 1$ since in an optimal solution, each x_i^* is at most 1.
- Thus, we can treat the x_i^* values as probabilities and choose S_i (to be in our set cover) with probability x_i^* .

Some comments on this randomized rounding

• This is a covering problem and the sets produced by randomized rounding will most likely not be a cover.

• So we will have to repeat this process enough times to have a good probability that all elements are covered.

• We will next show:

This randomized rounding algorithm with high probability produces a cover whose cost is within a factor $O(\log m)$ of the optimum.

The analysis

- It is easy to calculate the expected cost of the "partial cover" C' of sets selected by the LP optimum.
- Namely,

$$\mathbb{E}[cost(C')] = \sum w_i \cdot \mathbb{P}[S_i \text{ is chosen}] = \sum w_i x_i^* = \mathsf{OPT-LP}$$

- Now we need to calculate the probability that a given u ∈ U is not covered.
- Let's say that *u* occurs in sets S_1, \ldots, S_k . The LP solution must satisfy the constraint:

$$\sum_{i: u \in S_i} x_i^* \ge 1$$

The analysis continued

 Under this constraint, we can minimize the probability that u is covered by x_i^{*} = 1/k for 1 ≤ i ≤ k. Thus,

$$\mathbb{P}[$$
 u is not covered $] \leq \left(1 - rac{1}{k}
ight)^k \leq rac{1}{e}$

- Suppose now that we run the same randomized rounding algorithm $c \ln m$ times, where m = |U|, for some constant c. On each iteration, add sets (given by the rounded LP) to the set cover.
- While we may be adding the same set many times (and hence overcounting),

the cost of the "cover" $\leq (c \ln m) \cdot \text{OPT-LP}$.

Thus,

$$\mathbb{P}[u \text{ is not covered }] \leq \left(\frac{1}{e}\right)^{c \ln m} = \left(\frac{1}{m}\right)^{c}$$

Finishing the analysis

The union bound

Let R_1, \ldots, R_m be a set of random events with $\mathbb{P}[R_j] \leq p_j$. Then

```
\mathbb{P}[\text{ at least one } R_j \text{ occurs }] \leq p_1 + \ldots + p_m
```

• Let R_j be the event that element j is not covered. Then by the union bound,

$$\mathbb{P}[\text{ some } u \in U \text{ is not covered }] \leq |U| \left(rac{1}{m}
ight)^c = \left(rac{1}{m}
ight)^{c-1}$$

- Using the Markov inequality we can show that the expected cost is within $O(\log m) \cdot \text{OPT-LP}$ with good probability. Hence, with good probability we get a cover with cost $O(\log m) \cdot \text{OPT-LP}$.
- This certainly shows that with good probability we get a cover with cost O(log m) · OPT since OPT-LP ≤ OPT.