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Announcements and Qutline

Announcements
@ Lecture this Friday; slower pace for rest of term.
@ Next week in tutorial, we will go over all the basic probability
concepts that are needed for this part of the course.
@ There are many texts which will have a short section on basic
probability concepts; for example, see section 13.12 of the Kleinber
and Tardos text. )

Today’s outline
@ Max-Sat as an IP

@ Randomized rounding

@ Set cover and randomized rounding

)
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Randomized rounding — The weighted Max-Sat
problem

The weighted Max-Sat problem

@ Given a CNF formula F = GG A G A ... A Gy, over a set of variables
X1, . ..,Xp With clause C; having weight W;.

@ In contrast to Max-k-Sat and Exact Max-k-Sat, each clause can have
any number of literals.

@ Goal: is to find a truth assignment that maximizes that the total
weight of the satisfied clauses.
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The weighted Max-Sat problem as an IP

o Let CjJr (resp Cf) be the set of all variables occurring positively

(resp. negatively) in C;.
> For example, if G = x1 VX V x3, then G = {x1,x3} and C;” = {x}.

An IP formulation of weighted Max-Sat
maximize Z Wiz,

j=1
s.t. Zy;+ Z(l—y,-)sz foreach j=1,...,m
X,'GCJ-+ X,'ECJ-_

zj,y; € {0,1} foreach j=1,...,m

@ Intended meaning: z; = 1 indicates that clause C; is satisfied; the
propositional variable x; is set true iff y; = 1

@ The LP relaxation is 0 < y; <1 and 0 < z; < 1. Here we do want the
yi <1and z; <1 constraints. Why?



Randomized rounding the LP

@ Since we have forced our fractional solutions to be in [0, 1], we can
think of each fractional variable as a probability. Then we can do
randomized rounding.

o Let
{yik7"'7.y:;77zik7"'77z;;l}
be an optimal LP solution so that the LP-OPT = Zj Wz}

@ We set y; = 1 with probability y;* to obtain an integral solution.

@ We do not need to round the z variables since the desired solution is
a truth assignment (which will in turn determine which clauses are
satisfied).

@ Note that every rounded solution is a solution (i.e. truth assignment)
but we will need to use properties of the LP solution to derive an
approximation ratio.



The analysis
@ Let C; be a clause with k literals and by renaming we can assume
that CJ = (X1 VXxoV... \/Xk).
o Let by=1—(1- %)k We will show (next 3 slides) that
IP’[CJ is satisfied in the rounded solution] > szk
@ By linearity of expectations, the contribution (in expectation) to the
rounded solution of a clause C; having k literals is then at least

Wjzfby. (Recall that the LP-OPT = Y, W;z".)

@ Since (1 —1/k)k < 1/e (and converges to 1/e when k — o), the
approx. ratio is at least 1 —1/e > 0.632.

@ Note: We will need one further idea to obtain a 3/4 approx. ratio.
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Arithmetic-geometric mean inequality

@ In the analysis, we will need to make use of the arithmetic geometric
mean inequality which states that for non negative real values a;:

k
@ Or equivalently
a+a+ + ak k
< p ) > (a1- a2 ak)



Analysis continued: check each setp carefully

@ Let C; be a clause with k literals and by renaming assume
Cj: (X1 \/X2\/...\/Xk).

o (; is satisfied if not all of the y; are set to 0 (after setting y; = 1 with
probability y*).

@ Thus, the probability that ; is satisfied is 1 — [[,(1 — y/). By the
arithmetic-geometric mean inequality, this probability is at least

* k * k zjk k
1_<Zf_1(i_yi)> :1_<1_Zf'(7(1yi> 21_<1_IJ(>

@ The inequality is by the LP constraint: Z yi + Z (1-yi) >z
vieC’ vi€C
@ Note: Keep in mind the renaming making literals positive, so that we
just have Zy,-eCj* Vi -
@ Hence it follows that yi + ...+ y; > z".



End of analysis for Max-Sat

o Define g(z) =1— (1 - E)k then g(z) is a concave function with
g(0) =0 and g(1) = bx.

8(2)

0 1 b4

@ By concavity, g(z) > byz for all z € [0,1]. In particular,
g(z") = biz].

@ Hence if Cj is a clause with k literals, then the

IP’[CJ is satisfied in the rounded solution] > zj‘bk
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Some concluding remarks on this Max-Sat algorithm

@ Like the more naive randomized algorithm used for exact Max-k-Sat,
this algorithm can also be derandomized (by solving at most 2n LPs)
to obtain a (1 — 1/e) approximation.

@ Since the naive algorithm is good for big k clauses and the (1 —1/e)
approximation algorithm is good for small k clauses, it turns out that
by taking the best solution of these two deterministic algorithms, we
get a % approximation.

@ This is close to the best known approximation ratio for Max-Sat.
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The Set Cover problem

The Set Cover problem

@ Given a set of elements U = {1,2,..., m} (called the universe) and n
sets S = {51, 52,...,5,}, whose union comprises the universe U.

@ A subset S’ C S is a cover of U if its union contains all elements of U.

@ Goal: Find a smallest cover C C S.

Example

@ Assume we are given the universe U = {1,2,3,4,5} and sets

S = {{1,2,3},{2,4}, (3,4}, {2, 4, 5}}.

@ Clearly the union of all the sets in S contains all elements in U.

@ However, we can cover all of the elements with the following, smaller
number of sets {{1,2,3},{2,4,5}}.
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The weighted Set Cover problem

The weighted Set Cover problem

@ Given a set of elements U = {1,2,..., m} (called the universe) and n
sets S = {51, 5,,..., S}, whose union comprises the universe U.

@ Each set S; now has a weight w;

@ Goal: Find a cover C C S with minimum total weight.
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Set cover IP/LP randomized rounding

There is a very natural and efficient greedy algorithm for solving the
weighted set cover problem with approximation Hy; where
d= max;|5,-\.

Recall that O(H,,) = O(log m), where m is the size of the universe.

But we want to use this problem to give a final example of IP and
randomized rounding.

Note that in the randomized Max-Sat algorithms, we never had to
worry about whether or not a solution was feasible since every truth
assignment is feasible. The only issue was the approximation ratio.

The following randomized algorithm will with high probability produce
a cover that is within a factor O(Hy) = O(log m) of the optimum.

This is also an opportunity to (re)introduce a little more probability.

13/18



The IP/LP randomized rounding

An IP formulation of weighted Set Cover

i=1

s.t. Z xi >1 foreachj=1,....m
i:jES;
x; € {0,1} foreachi=1,...,n

@ We relax this 0/1 IP by replacing the integrality constraints
x; € {0,1} by the following constraints:
0 < x foreachi=1,...,n
@ We solve this LP and find an optimal solution {x;,...,x}}.
@ We know x;* < 1 since in an optimal solution, each x;" is at most 1.

@ Thus, we can treat the x; values as probabilities and choose S; (to be

in our set cover) with probability x;.
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Some comments on this randomized rounding

@ This is a covering problem and the sets produced by randomized
rounding will most likely not be a cover.

@ So we will have to repeat this process enough times to have a good
probability that all elements are covered.

@ We will next show:

This randomized rounding algorithm with high probability produces a
cover whose cost is within a factor O(log m) of the optimum. J
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The analysis

@ It is easy to calculate the expected cost of the “partial cover’ C’ of
sets selected by the LP optimum.

@ Namely,

E[cost(C")] = wi - P[S; is chosen] = )~ wix} = OPT-LP

@ Now we need to calculate the probability that a given u € U is not
covered.

@ Let's say that u occurs in sets Si,...,Sk. The LP solution must
satisfy the constraint:
S sz

i u€es;
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The analysis continued

@ Under this constraint, we can minimize the probability that u is
covered by x* =1/k for 1 <i < k. Thus,

. 1\ 1
P[ u is not covered | < (1 — p < -
e

@ Suppose now that we run the same randomized rounding algorithm
c¢In m times, where m = |U|, for some constant c. On each iteration,
add sets (given by the rounded LP) to the set cover.

@ While we may be adding the same set many times (and hence
overcounting),
the cost of the “cover” < (cInm) - OPT-LP.

. 1 clnm 1\°€
P[ u is not covered | < | = == .
e m

@ Thus,
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Finishing the analysis

The union bound
Let Ri,..., Rm be a set of random events with P[R;] < p;. Then

IP[ at least one Rj occurs | < p1 + ...+ pm

@ Let R; be the event that element j is not covered. Then by the union
bound,

1 c 1 c—1
P[ some u € U is not covered | < |U] <> = ()
m m
@ Using the Markov inequality we can show that the expected cost is
within O(log m) - OPT-LP with good probability. Hence, with good
probability we get a cover with cost O(log m) - OPT-LP.

@ This certainly shows that with good probability we get a cover with
cost O(log m) - OPT since OPT-LP < OPT.
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