CSC 373: Algorithm Design and Analysis Lecture 25

Allan Borodin

March 20, 2013

Announcements and Outline

Announcements

- Lecture this Friday; slower pace for rest of term.
- Next week in tutorial, we will go over all the basic probability concepts that are needed for this part of the course.
- There are many texts which will have a short section on basic probability concepts; for example, see section 13.12 of the Kleinber and Tardos text.

Today's outline

- Max-Sat as an IP
- Randomized rounding
- Set cover and randomized rounding

Randomized rounding - The weighted Max-Sat problem

The weighted Max-Sat problem

- Given a CNF formula $F=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$ over a set of variables x_{1}, \ldots, x_{n} with clause C_{i} having weight W_{i}.
- In contrast to Max-k-Sat and Exact Max-k-Sat, each clause can have any number of literals.
- Goal: is to find a truth assignment that maximizes that the total weight of the satisfied clauses.

The weighted Max-Sat problem as an IP

- Let C_{j}^{+}(resp C_{j}^{-}) be the set of all variables occurring positively (resp. negatively) in C_{j}.
- For example, if $C_{j}=x_{1} \vee \bar{x}_{2} \vee x_{3}$, then $C_{j}^{+}=\left\{x_{1}, x_{3}\right\}$ and $C_{j}^{-}=\left\{x_{2}\right\}$.

An IP formulation of weighted Max-Sat

$$
\begin{aligned}
\operatorname{maximize} & \sum_{j=1}^{m} W_{j} z_{j} \\
\text { s.t. } & \sum_{x_{i} \in C_{j}^{+}} y_{i}+\sum_{x_{i} \in C_{j}^{-}}\left(1-y_{i}\right) \geq z_{j} \\
& \text { for each } j=1, \ldots, m \\
z_{j}, y_{j} \in\{0,1\} & \text { for each } j=1, \ldots, m
\end{aligned}
$$

- Intended meaning: $z_{j}=1$ indicates that clause C_{j} is satisfied; the propositional variable x_{i} is set true iff $y_{i}=1$
- The LP relaxation is $0 \leq y_{i} \leq 1$ and $0 \leq z_{j} \leq 1$. Here we do want the $y_{i} \leq 1$ and $z_{j} \leq 1$ constraints. Why?

Randomized rounding the LP

- Since we have forced our fractional solutions to be in $[0,1]$, we can think of each fractional variable as a probability. Then we can do randomized rounding.
- Let

$$
\left\{y_{1}^{*}, \ldots, y_{m}^{*}, z_{1}^{*}, \ldots,, z_{m}^{*}\right\}
$$

be an optimal LP solution so that the LP-OPT $=\sum_{j} W_{j} z_{j}^{*}$.

- We set $\hat{y}_{i}=1$ with probability y_{i}^{*} to obtain an integral solution.
- We do not need to round the z_{j}^{*} variables since the desired solution is a truth assignment (which will in turn determine which clauses are satisfied).
- Note that every rounded solution is a solution (i.e. truth assignment) but we will need to use properties of the LP solution to derive an approximation ratio.

The analysis

- Let C_{j} be a clause with k literals and by renaming we can assume that $C_{j}=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{k}\right)$.
- Let $b_{k}=1-\left(1-\frac{1}{k}\right)^{k}$. We will show (next 3 slides) that

$$
\mathbb{P}\left[C_{j} \text { is satisfied in the rounded solution }\right] \geq z_{j}^{*} b_{k}
$$

- By linearity of expectations, the contribution (in expectation) to the rounded solution of a clause C_{j} having k literals is then at least $W_{j} z_{j}^{*} b_{k}$. (Recall that the LP-OPT $=\sum_{j} W_{j} z_{j}^{*}$.)
- Since $(1-1 / k)^{k}<1 / e$ (and converges to $1 / e$ when $k \rightarrow \infty$), the approx. ratio is at least $1-1 / e>0.632$.
- Note: We will need one further idea to obtain a $3 / 4$ approx. ratio.

Arithmetic-geometric mean inequality

- In the analysis, we will need to make use of the arithmetic geometric mean inequality which states that for non negative real values a_{i} :

$$
\frac{a_{1}+a_{2}+\ldots+a_{k}}{k} \geq\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}\right)^{1 / k}
$$

- Or equivalently

$$
\left(\frac{a_{1}+a_{2}+\ldots+a_{k}}{k}\right)^{k} \geq\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}\right)
$$

Analysis continued: check each setp carefully

- Let C_{j} be a clause with k literals and by renaming assume $C_{j}=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{k}\right)$.
- C_{j} is satisfied if not all of the y_{i} are set to 0 (after setting $y_{i}=1$ with probability y_{i}^{*}).
- Thus, the probability that C_{j} is satisfied is $1-\prod_{i}\left(1-y_{i}^{*}\right)$. By the arithmetic-geometric mean inequality, this probability is at least

$$
1-\left(\frac{\sum_{i=1}^{k}\left(1-y_{i}^{*}\right)}{k}\right)^{k}=1-\left(1-\frac{\sum_{i=1}^{k} y_{i}^{*}}{k}\right)^{k} \geq 1-\left(1-\frac{z_{j}^{*}}{k}\right)^{k}
$$

- The inequality is by the LP constraint: $\sum_{y_{i} \in C_{j}^{+}} y_{i}+\sum_{y_{i} \in C_{j}^{-}}\left(1-y_{i}\right) \geq z_{j}$
- Note: Keep in mind the renaming making literals positive, so that we just have $\sum_{y_{i} \in C_{j}^{+}} y_{i}$.
- Hence it follows that $y_{1}^{*}+\ldots+y_{k}^{*} \geq z_{j}^{*}$.

End of analysis for Max-Sat

- Define $g(z)=1-\left(1-\frac{z}{k}\right)^{k}$, then $g(z)$ is a concave function with $g(0)=0$ and $g(1)=b_{k}$.

- By concavity, $g(z) \geq b_{k} z$ for all $z \in[0,1]$. In particular, $g\left(z^{*}\right) \geq b_{k} z_{j}^{*}$.
- Hence if C_{j} is a clause with k literals, then the
$\mathbb{P}\left[C_{j}\right.$ is satisfied in the rounded solution $] \geq z_{j}^{*} b_{k}$

Some concluding remarks on this Max-Sat algorithm

- Like the more naive randomized algorithm used for exact Max-k-Sat, this algorithm can also be derandomized (by solving at most $2 n$ LPs) to obtain a ($1-1 / e$) approximation.
- Since the naive algorithm is good for big k clauses and the ($1-1 / e$) approximation algorithm is good for small k clauses, it turns out that by taking the best solution of these two deterministic algorithms, we get a $\frac{3}{4}$ approximation.
- This is close to the best known approximation ratio for Max-Sat.

The Set Cover problem

The Set Cover problem

- Given a set of elements $U=\{1,2, \ldots, m\}$ (called the universe) and n sets $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$, whose union comprises the universe U.
- A subset $S^{\prime} \subseteq S$ is a cover of U if its union contains all elements of U.
- Goal: Find a smallest cover $C \subseteq S$.

Example

- Assume we are given the universe $U=\{1,2,3,4,5\}$ and sets

$$
S=\{\{1,2,3\},\{2,4\},\{3,4\},\{2,4,5\}\} .
$$

- Clearly the union of all the sets in S contains all elements in U.
- However, we can cover all of the elements with the following, smaller number of sets $\{\{1,2,3\},\{2,4,5\}\}$.

The weighted Set Cover problem

The weighted Set Cover problem

- Given a set of elements $U=\{1,2, \ldots, m\}$ (called the universe) and n sets $S=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$, whose union comprises the universe U.
- Each set S_{i} now has a weight w_{i}
- Goal: Find a cover $C \subseteq S$ with minimum total weight.

Set cover IP/LP randomized rounding

- There is a very natural and efficient greedy algorithm for solving the weighted set cover problem with approximation H_{d} where $d=\max _{i}\left|S_{i}\right|$.
- Recall that $O\left(H_{m}\right)=O(\log m)$, where m is the size of the universe.
- But we want to use this problem to give a final example of IP and randomized rounding.
- Note that in the randomized Max-Sat algorithms, we never had to worry about whether or not a solution was feasible since every truth assignment is feasible. The only issue was the approximation ratio.
- The following randomized algorithm will with high probability produce a cover that is within a factor $O\left(H_{d}\right)=O(\log m)$ of the optimum.
- This is also an opportunity to (re)introduce a little more probability.

The IP/LP randomized rounding

An IP formulation of weighted Set Cover

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{i=1}^{n} w_{i} x_{i} & \\
\text { s.t. } & \sum_{i: j \in S_{i}} x_{i} \geq 1 & \text { for each } j=1, \ldots, m \\
& x_{i} \in\{0,1\} & \text { for each } i=1, \ldots, n
\end{array}
$$

- We relax this $0 / 1 \mathrm{IP}$ by replacing the integrality constraints $x_{i} \in\{0,1\}$ by the following constraints:

$$
0 \leq x_{i} \quad \text { for each } i=1, \ldots, n
$$

- We solve this LP and find an optimal solution $\left\{x_{1}^{*}, \ldots, x_{n}^{*}\right\}$.
- We know $x_{i}^{*} \leq 1$ since in an optimal solution, each x_{i}^{*} is at most 1 .
- Thus, we can treat the x_{i}^{*} values as probabilities and choose S_{i} (to be in our set cover) with probability x_{i}^{*}.

Some comments on this randomized rounding

- This is a covering problem and the sets produced by randomized rounding will most likely not be a cover.
- So we will have to repeat this process enough times to have a good probability that all elements are covered.
- We will next show:

This randomized rounding algorithm with high probability produces a cover whose cost is within a factor $O(\log m)$ of the optimum.

The analysis

- It is easy to calculate the expected cost of the "partial cover" C^{\prime} of sets selected by the LP optimum.
- Namely,

$$
\mathbb{E}\left[\operatorname{cost}\left(C^{\prime}\right)\right]=\sum w_{i} \cdot \mathbb{P}\left[S_{i} \text { is chosen }\right]=\sum w_{i} x_{i}^{*}=\text { OPT-LP }
$$

- Now we need to calculate the probability that a given $u \in U$ is not covered.
- Let's say that u occurs in sets S_{1}, \ldots, S_{k}. The LP solution must satisfy the constraint:

$$
\sum_{i: u \in S_{i}} x_{i}^{*} \geq 1
$$

The analysis continued

- Under this constraint, we can minimize the probability that u is covered by $x_{i}^{*}=1 / k$ for $1 \leq i \leq k$. Thus,

$$
\mathbb{P}[u \text { is not covered }] \leq\left(1-\frac{1}{k}\right)^{k} \leq \frac{1}{e}
$$

- Suppose now that we run the same randomized rounding algorithm $c \ln m$ times, where $m=|U|$, for some constant c. On each iteration, add sets (given by the rounded LP) to the set cover.
- While we may be adding the same set many times (and hence overcounting),

$$
\text { the cost of the "cover" } \leq(c \ln m) \cdot \text { OPT-LP. }
$$

- Thus,

$$
\mathbb{P}[u \text { is not covered }] \leq\left(\frac{1}{e}\right)^{c \ln m}=\left(\frac{1}{m}\right)^{c}
$$

Finishing the analysis

The union bound

Let R_{1}, \ldots, R_{m} be a set of random events with $\mathbb{P}\left[R_{j}\right] \leq p_{j}$. Then

$$
\mathbb{P}\left[\text { at least one } R_{j} \text { occurs }\right] \leq p_{1}+\ldots+p_{m}
$$

- Let R_{j} be the event that element j is not covered. Then by the union bound,

$$
\mathbb{P}[\text { some } u \in U \text { is not covered }] \leq|U|\left(\frac{1}{m}\right)^{c}=\left(\frac{1}{m}\right)^{c-1}
$$

- Using the Markov inequality we can show that the expected cost is within $O(\log m) \cdot$ OPT-LP with good probability. Hence, with good probability we get a cover with cost $O(\log m) \cdot$ OPT-LP.
- This certainly shows that with good probability we get a cover with cost $O(\log m) \cdot$ OPT since OPT-LP \leq OPT.

