CSC 373: Algorithm Design and Analysis Lecture 24

Allan Borodin

March 18, 2013

Announcements

- All tutorials today in BA 2155
- I have posted additional questions for problem set 3 .
- Proposal for change in grading scheme (if unanimous consent):
(1) For each student, I will count the final exam as 45% and term test 2 as 10% if your final exam score is better than your term test 2 score.
(2) A student pointed out a technical error in my slides on the local search algorithm for Exact Max-k-Sat and I appreciate being told about any and all errors. Depending on the seriousness of the error, I will award extra credit for technical corrections. Pointing out (say) notational errors will not gain extra credit but will be appreciated.

Today's outline

- Continue discussion of randomized algorithms
- Random sampling
- Polynomial identities and the symbolic determinant problem
- The Max-Sat problem and randomized rounding (if time permits)

Random assignments and the probabilistic method

- The naive randomized algorithm for Exact Max- k-Sat is an example of random sampling and the probabilistic method.
- That is, we are asserting the existence of something (i.e. an assignment satisfying some fraction of clauses) by a probabilistic argument.
- This is a standard approach where the expectation or non-zero probability of a random variable shows that something exists.
- In general, this is a non-constructive argument as we do not constructively give a specific solution satisfying the existential claim.
- However, in the case of the Exact Max-k-Sat problem, the method of conditional expectations does give us a constructive method.
- As another example, consider the following

The edge weighted 4-colouring optimization problem

Given an edge weighted graph $G=(V, E, w)$ with edge weights $w(e)>0$ on each edge $e \in E$.

Goal: is to find a 4-colouring σ (of the nodes) so as to maximize the weighted sum of edges $e=(u, v)$ such that $\sigma(u) \neq \sigma(v)$; that is,

$$
\max _{\sigma: V \rightarrow\{1,2,3,4\}} \sigma(G)
$$

where $\sigma(G)=\sum_{e: e=(u, v) \in E, \sigma(u) \neq \sigma(v)} W_{e}$.

- Claim: There is a randomized algorithm for computing a 4-colouring σ such that for all inputs G, the expected value $E[\sigma(G)] \geq \frac{3}{4} W(G)$ where $W(G)=\sum_{e \in E} w(e)$.
- As in the Exact Max-k-Sat problem, the same naive setting of node colours guarantees the desired expectation and hence the existence of some colouring acheiving the expectation.

Polynomial identities - more random sampling

- We want to exploit the fact that "low degree" non zero polynomials have "few" zeros.
- In probabilistic terms when evaluated on a random point, a low degree non zero polynomial will likely not evaluate to zero.

Schwartz-Zipple Lemma

Let f be a non zero m-variate polynomial (say over a ring R) of degree $d \geq 0$. Let each r_{i} be randomly chosen from a subset S of R. Then

$$
\mathbb{P}\left[f\left(r_{1}, \ldots, r_{m}\right)=0\right] \leq \frac{d}{|S|} .
$$

- We will consider two applications relating to polynomial identities, namely testing a matrix multiplication algorithm, and determining if a symbolic determinant is identically zero.

First application: testing if $C=A \cdot B$

- We might have a fast but not proven matrix multiplication algorithm.
- We want to use it but would like to be confident that when using it for a given input (A, B), it is unlikely to have made a mistake.
(Debugging vs testing vs proving correctness)
- Suppose these are $n \times n$ matrices with elements in a ring $R($ e.g. $\mathbb{Z})$.
- We want to be able to test that the result $C=A \cdot B$ and do so much faster than say using a standard well proven (say $O\left(n^{3}\right)$) algorithm.
- Let S be an arbitrary subset of R and choose a random vector $x \in S^{n}$. Now check if $C \cdot x=A \cdot(B \cdot x)$, which takes time $3 n^{2}$ using the standard matrix vector product algorithm.

Claim

$$
\text { If } C \neq A \cdot B \text {, then } \mathbb{P}[C \cdot x=A \cdot(B \cdot x)] \leq \frac{1}{|S|}
$$

A "puzzle" relating to interpolation

- Given an input n, we want to check if

$$
\operatorname{det}\left(\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \ldots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right]\right)-\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) \equiv 0 ?
$$

- From a theorem by Vandermonde, the answer is always yes.
- As a consequence, it follows that given the values of a polynomial at n distinct points, there is always a unique degree $n-1$ polynomial that satifies those values.
- But assume that we don't know this theorem (and a proof), how do we test if this identity is true?

Symbolic Determinant

- Recall the definition of a matrix determinant

$$
\operatorname{det}(A)=\sum_{\text {permutations } \pi}(-1)^{\operatorname{sgn}(\pi)} \prod_{i} a_{i, \pi(i)}
$$

- The definition makes sense when the matrix elements are in any ring R. In particular, R can be ring of polynomials in variables x_{i} and say integer or rational coefficients.
- Let A be an $n \times n$ matrix and say each matrix entry $a_{i j}$ is a linear (resp. degree d) polynomial, then $\operatorname{det}(A)$ is a degree n (resp. degree $d n$) polynomial in the variables x_{i}.
- The symbolic determinant problem is to determine whether or not $\operatorname{det}(A)$ is the zero polynomial.

Motivation for symbolic determinant

- Consider the $n \times n$ adjacency matrix for a bipartite graph G.
- Suppose we wish to determine if G has a perfect matching.
- As we have seen, this problem can be solved in polytime by a transformation to max flow. But the max flow algorithm seems to be inherently sequential.
- We can solve the perfect matching problem by a transformation to the symbolic determinant problem. Define

$$
A_{G}= \begin{cases}0 & \text { if }(i, j) \notin E \\ x_{i, j} & \text { if }(i, j) \in E\end{cases}
$$

- It is easy to observe that G has a perfect matching iff the $\operatorname{det}\left(A_{G}\right)$ is not the zero polynomial.

The complexity of symbolic determinant

- As a polynomial, $\operatorname{det}(A)$ could have $n!$ terms and hence just writing out $\operatorname{det}(A)$ is not feasible for large n.
- But since $\operatorname{det}(A)$ is a degree n polynomial in the $x_{i j}$, we can invoke the Schwartz-Zipple lemma using say a set S of scalars with $|S| \geq 2 n$.
- Then assuming $\operatorname{det}(A)$ is not the zero polynomial,

$$
\stackrel{\mathbb{P}}{s \text { uniform random in } S^{n^{2}}}[\operatorname{det}(A(s))=0] \leq \frac{1}{2}
$$

- Note that $\operatorname{det}(A(s))$ can be computed as fast as matrix product and can be efficiently computed in parallel.
- The symbolic determinant problem is one main example of a decision problem that can be computed efficiently with randomization but (currently) not known to be in P.

Randomized rounding - The weighted Max-Sat problem

The weighted Max-Sat problem

- Given a CNF formula $F=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$ over a set of variables x_{1}, \ldots, x_{n} with clause C_{i} having weight W_{i}.
- In contrast to Max-k-Sat and Exact Max-k-Sat, each clause can have any number of literals.
- Goal: is to find a truth assignment that maximizes that the total weight of the satisfied clauses.

