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Announcements

All tutorials today in BA 2155

I have posted additional questions for problem set 3.

Proposal for change in grading scheme (if unanimous consent):

1 For each student, I will count the final exam as 45% and term test 2 as
10% if your final exam score is better than your term test 2 score.

2 A student pointed out a technical error in my slides on the local search
algorithm for Exact Max-k-Sat and I appreciate being told about any
and all errors. Depending on the seriousness of the error, I will award
extra credit for technical corrections. Pointing out (say) notational
errors will not gain extra credit but will be appreciated.
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Today’s outline

Continue discussion of randomized algorithms

Random sampling

Polynomial identities and the symbolic determinant problem

The Max-Sat problem and randomized rounding (if time permits)
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Random assignments and the probabilistic method

The naive randomized algorithm for Exact Max-k-Sat is an example
of random sampling and the probabilistic method.

That is, we are asserting the existence of something (i.e. an
assignment satisfying some fraction of clauses) by a probabilistic
argument.

This is a standard approach where the expectation or non-zero
probability of a random variable shows that something exists.

In general, this is a non-constructive argument as we do not
constructively give a specific solution satisfying the existential claim.

However, in the case of the Exact Max-k-Sat problem, the method of
conditional expectations does give us a constructive method.
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As another example, consider the following

The edge weighted 4-colouring optimization problem

I Given an edge weighted graph G = (V ,E ,w) with edge weights w(e) > 0
on each edge e ∈ E .

I Goal: is to find a 4-colouring σ (of the nodes) so as to maximize the
weighted sum of edges e = (u, v) such that σ(u) 6= σ(v); that is,

max
σ:V→{1,2,3,4}

σ(G )

where σ(G ) =
∑

e:e=(u,v)∈E ,σ(u)6=σ(v) we .

Claim: There is a randomized algorithm for computing a 4-colouring
σ such that for all inputs G , the expected value E [σ(G )] ≥ 3

4W (G )
where W (G ) =

∑
e∈E w(e).

As in the Exact Max-k-Sat problem, the same naive setting of node
colours guarantees the desired expectation and hence the existence of
some colouring acheiving the expectation.

5 / 12



Polynomial identities – more random sampling

We want to exploit the fact that “low degree” non zero polynomials
have “few” zeros.

In probabilistic terms when evaluated on a random point, a low
degree non zero polynomial will likely not evaluate to zero.

Schwartz-Zipple Lemma

Let f be a non zero m-variate polynomial (say over a ring R) of degree
d ≥ 0. Let each ri be randomly chosen from a subset S of R. Then

P[f (r1, . . . , rm) = 0] ≤ d

|S |
.

We will consider two applications relating to polynomial identities,
namely testing a matrix multiplication algorithm, and determining if a
symbolic determinant is identically zero.
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First application: testing if C = A · B

We might have a fast but not proven matrix multiplication algorithm.

We want to use it but would like to be confident that when using it
for a given input (A,B), it is unlikely to have made a mistake.

(Debugging vs testing vs proving correctness)

Suppose these are n × n matrices with elements in a ring R (e.g. Z).

We want to be able to test that the result C = A · B and do so much
faster than say using a standard well proven (say O(n3)) algorithm.

Let S be an arbitrary subset of R and choose a random vector
x ∈ Sn. Now check if C · x = A · (B · x), which takes time 3n2 using
the standard matrix vector product algorithm.

Claim

If C 6= A · B, then P[C · x = A · (B · x)] ≤ 1

|S |
.
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A “puzzle” relating to interpolation

Given an input n, we want to check if

det




1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12

1 x3 x23 . . . xn−13
...

...
...

. . .
...

1 xn x2n . . . xn−1n



−
∏

1≤i<j≤n
(xj − xi ) ≡ 0?

From a theorem by Vandermonde, the answer is always yes.

As a consequence, it follows that given the values of a polynomial at
n distinct points, there is always a unique degree n − 1 polynomial
that satifies those values.

But assume that we don’t know this theorem (and a proof), how do
we test if this identity is true?
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Symbolic Determinant

Recall the definition of a matrix determinant

det(A) =
∑

permutations π

(−1)sgn(π)
∏
i

ai ,π(i)

The definition makes sense when the matrix elements are in any ring
R. In particular, R can be ring of polynomials in variables xi and say
integer or rational coefficients.

Let A be an n × n matrix and say each matrix entry aij is a linear
(resp. degree d) polynomial, then det(A) is a degree n (resp. degree
dn) polynomial in the variables xi .

The symbolic determinant problem is to determine whether or not
det(A) is the zero polynomial.
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Motivation for symbolic determinant

Consider the n × n adjacency matrix for a bipartite graph G .

Suppose we wish to determine if G has a perfect matching.

As we have seen, this problem can be solved in polytime by a
transformation to max flow. But the max flow algorithm seems to be
inherently sequential.

We can solve the perfect matching problem by a transformation to
the symbolic determinant problem. Define

AG =

{
0 if (i , j) 6∈ E

xi ,j if (i , j) ∈ E

It is easy to observe that G has a perfect matching iff the det(AG ) is
not the zero polynomial.

10 / 12



The complexity of symbolic determinant

As a polynomial, det(A) could have n! terms and hence just writing
out det(A) is not feasible for large n.

But since det(A) is a degree n polynomial in the xij , we can invoke
the Schwartz-Zipple lemma using say a set S of scalars with |S | ≥ 2n.

Then assuming det(A) is not the zero polynomial,

P
s uniform random in Sn2

[
det(A(s)) = 0

]
≤ 1

2

Note that det(A(s)) can be computed as fast as matrix product and
can be efficiently computed in parallel.

The symbolic determinant problem is one main example of a decision
problem that can be computed efficiently with randomization but
(currently) not known to be in P.
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Randomized rounding – The weighted Max-Sat
problem

The weighted Max-Sat problem

Given a CNF formula F = C1 ∧ C2 ∧ . . . ∧ Cm over a set of variables
x1, . . . , xn with clause Ci having weight Wi .

In contrast to Max-k-Sat and Exact Max-k-Sat, each clause can have
any number of literals.

Goal: is to find a truth assignment that maximizes that the total
weight of the satisfied clauses.
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