
CSC 373: Algorithm Design and Analysis
Lecture 23

Allan Borodin

March 15, 2013

1 / 25



Announcements and Outline

Announcements

I have now posted two questions on local search in addition to the
previously posted three questions.

Today’s outline

Continue discussion of Exact Max-2-Sat

Local search for makespan

Some concluding remarks on local search

Begin randomization

2 / 25



Review Exact Max-2-Sat

Given: An exact 2-CNF formula

F = C1 ∧ C2 ∧ . . . ∧ Cm,

where Ci = (`1i ∨ `2i ) and `ji ∈ {xk , x̄k | 1 ≤ k ≤ n} .

In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment τ so as to maximize

W (τ) = w(F | τ),

the weighted sum of satisfied clauses w.r.t the truth assignment τ .

3 / 25



The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood

Nd(τ) = {τ ′ | τ and τ ′ differ on at most d variables}

Oblivious local search for Exact Max-2-Sat

1: Choose any initial truth assignment τ
2: while there exists τ̂ ∈ Nd(τ) such that W (τ̂)>W (τ) do
3: τ := τ̂
4: end while

4 / 25



How good is this algorithm?

Note: in what follows I will use approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio is 2
3 .

In fact, for every formula, the algorithm finds an assignment τ such
that W (τ) ≥ 2

3

∑m
i=1 wi , the weight of all clauses, and we say that

the “totality ratio” is at least 2
3 .

(More generally for Exact Max-k-Sat the ratio is k
k+1).

This locality ratio is essentially a tight ratio for any d = o(n).

This is in contrast to a naive greedy algorithm derived from a
randomized algorithm that achieves totality ratio (2k − 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with the greedy algorithm
and then apply local search.

5 / 25



Analysis of the oblivious local search for Exact
Max-2-Sat

Let τ be a local optimum and let
I S0 be those clauses that are not satisfied by τ
I S1 be those clauses that are satisfied by exactly one literal by τ
I S2 be those clauses that are satisfied by two literals by τ

Let W (Si ) be the corresponding weight.

We will say that a clause involves a variable xj if either xjor x̄j occurs
in the clause. Then for each j , let

I Aj be those clauses in S0 involving the variable xj .
I Bj be those clauses C in S1 involving the variable xj such that it is the

literal xj or x̄j that is satisfied in C by τ .

Let W (Aj),W (Bj) be the corresponding weights.

6 / 25



Analysis of the oblivious local search (continued)

Summing over all variables xj , we get
I 2W (S0) =

∑
j W (Aj) noting that each clause in S0 gets counted twice.

I W (S1) =
∑

j W (Bj)

Given that τ is a local optimum, for every j , we have

W (Aj) ≤W (Bj)

or else flipping the truth value of xj would improve the weight of the
clauses being satisfied.

Hence (by summing over all j),

2W0 ≤W1.

7 / 25



Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S0)

W (S0) + W (S1) + W (S2)
≤ W (S0)

3W (S0) + W (S2)
≤ W (S0)

3W (S0)

It is not easy to verify but there are examples showing that this 2
3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4
5 whenever d < n/2. For

d = n/2, the algorithm would be optimal.

In the weighted case, as in the max-cut problem, we have to worry
about the number of iterations. And here again we can speed up the
termination by insisting that any improvement has to be sufficiently
better.

8 / 25



Using the proof to improve the algorithm

We can learn something from this proof to improve the performance.

Note that we are not using anything about W (S2).

If we could guarantee that W (S0) was at most W (S2) then the ratio
of clause weights not satisfied to all clause weights would be 1

4 .

Claim: We can do this by enlarging the neighbourhood to include
τ ′ = the complement of τ .

9 / 25



The non oblivious local search

We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

10 / 25



Sketch of 3
4 totality bound for this non oblivious

local search

Without loss of generality (by renaming variables), assume we have a
local optimum τ(xj) = true for all variables xj .

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:

−1

2
P2,j −

3

2
P1,j +

1

2
N1,j +

3

2
N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain

3W (S0) ≤W (S1) + W (S2)

11 / 25



The jump local search algorithm for makespan on
identical machines

Start with any initial solution

It doesn’t matter how jobs are arranged on a machine so the
algorithm can move any job (on a “critical machine” defining the
current makespan value) if that move will “improve things”.

I That is, a (successful) jump move is one that moves any job to another
machine so that either the makespan is decreased or the number of
machines determining the current makespan is decreased.

Note: this is a non-oblivious local search as we may not be
decreasing the current makepsan in moving to a better solution.

Finn and Horowitz [1979] prove: that the “locality gap” for this local
search algorithm is 2− 2

m+1 . That is, this is the worst case ratio for
some local optimum compared to the global optimum.

To bound the number of iterations, in moving Jk , it should be moved
to a machine having the current minimum load.

12 / 25



A more complicated local search for makespan

The following local search algorithm is only being presented as an
example of a more complicated neighbourghood.

The jump local search does not provide as good an approximation as
the LPT greedy algorithm and doesn’t provide a constant
(independent of m) approximation for the makespan problem in the
uniformly related machines model.

There is a more involved neighbourhood called the push
neighbourhood, inspired by the Kernighan and Lin variable depth
local search algorithms for graph partitioning and TSP.

13 / 25



Push operation

A push operation is a sequence of jumps defined as follows:

A push is initiated by a jump of a job Jk on a critical machine to a
machine Mi on which it “fits in the sense that

pk +
∑

Jj on Mi and pj≥pk

pj

is less than the current makespan.

If smaller (i.e. with pj < pk) jobs on Mi cause the makespan on Mi

to equal or exceed the current makespan then in order of smallest
jobs first, we keep moving small jobs to a priority queue.

We then try to move jobs (in order of the largest job first) on the
queue to a machine on which it fits and continue the process until
either there is no machine on which it fits or the priority queue is
empty.

14 / 25



Locality gaps for push local search

Since a push optimal solution is also a jump optimal solution, it
follows that the push local search has locality gap at most 2− 2

m+1 .

The current lower bound on the locality gap is 4m
3m+1

The bound 8
7 is tight for m = 2 and hence beats LPT for m = 2

machines.

For uniformly related machines, the jump locality gap is at most
2− 2

m+1 and the lower bound is arbitrarily close to 3/2.

Push does not give a constant (independant of input values)
approximation for the restricted or unrelated machines models.

15 / 25



Some concluding comments (for now) on local
search

If time permits, we will return later to local search and in particular
non-oblivious local search.

But suffice it to say now that local search is the basis for many
practical algorithms, especially when the idea is extended by allowing
some well motivated ways to escape local optima (e.g. simulated
annealing, tabu search).

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
analyzed. It is not surprising then that there hasn’t been much
interest in formalizing the method and establishing limits.

LP is itself often solved by some variant of the simplex method, which
can also be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

I No such method is known to run in polynomial time in the worst case.

16 / 25



Ford Fulkerson max flow algorithms

As mentioned before, Ford Fulkerson can be viewed as a local search
algorithm.

Ford Fulkerson

1: Initialize f := 0 and Gf := G
2: while there is an augmenting path π in Gf do
3: f := f + fπ /* Note this also changes Gf */
4: end while

As we already discussed, this is a scheme rather than a well specified
algorithm since we have not said how one chooses an augmenting
path (as there can be many such paths).

And as we have noted, the Ford Fulkerson scheme is a local search
algorithm where the neighbourhood Nbhd(f ) is the set of flows f̂
that can be obtained by adding the flow from an augmenting path.

This is a somewhat unusual local search algorithm in that any local
optimum is a global optimum.

17 / 25



Final topic of the course: Randomization

Randomization

Unlike our focus on topics such as greedy algorithms, dynamic
programming, local search, IP/LP rounding, randomization is not a
meta algorithm or algorithmic paradigm.

Rather, randomization an idea that can be applied in any algorithm.

We shall consider its use in a variety of applications.

18 / 25



Randomization

We will show how to use randomization to either speed up
computations and/or to improve an approximation and/or as a step
towards a deterministic algorithm.

There are computational settings (simulation, cryptography, sublinear
time algorithms) where randomization is provably necessary.

There are also problems where we do not know how to solve a
problem efficiently without randomization.

But as far as we know

It could be that the class of decision/search/optimization problems
solvable in randomized polynomial time is the same as those solvable in

polynomial time.

I In fact, this seems to be the current wisdom of some experts since if
not the case then seemingly stranger things would result.

We will recall probabilistic concepts as needed.
19 / 25



First application: Exact Max-k-Sat

We will show that a very naive use of randomization computes a truth
assignment that (in expectation) satisfies a 2k−1

2k
fraction of clauses

(in the weighted case, the fraction of the total weight of all clauses).

Let F = C1 ∧ C2 ∧ . . . ∧ Cm be an exact k-CNF formula.

Let Wi denote the weight of the clause Ci .

The algorithm sets each variable randomly (and independently) so
that P [xj = true] = P [xj = false] = 1/2.

Let Xi (resp. X̄i ) denote the indicator random variable that is 1 if Ci

is satisfied (resp. unsatisfied) and 0 otherwise.

Let the random variable WF be the total weight of all satisfied
clauses in F .

Proposition

E[WF ] =
(∑

Wi

)
· 2k − 1

2k

20 / 25



Proving the proposition

Proposition

E[WF ] =
(∑

Wi

)
· 2k − 1

2k

Recall linearity of expectation says that:

E

[∑
i

Xi

]
=
∑
i

E[Xi ] E [c · X ] = c · E[X ]

We observe that

Claim

E[X̄i ] = 1/2k and hence E[Xi ] = (2k − 1)/2k .

By linearity of expectation, we have

E[WF ] =
(∑

Wi

)
· (2k − 1)/(2k),

Note: compare this with the oblivious local search.
21 / 25



Derandomizing the algorithm

This naive randomized algorithm is an online algorithm in the sense
that the order in which we set the variables does not matter.

We can derandomize this algorithm by the method of conditional
expectations to yield a deterministic (still online) greedy algorithm.

The method works as follows.
I Think of the input items being the propositional variables where we

represent each variable by the clauses in which it occurs.
I For each variable we want to set its truth value so as to maximize the

expectation of the formula F given whatever assignments have already
been made.

22 / 25



Derandomizing the algorithm (continued)

Consider the first variable assignment (say to x1). We have

E[WF ] =
1

2
· E[WF | x1 = true] +

1

2
· E[WF | x1 = false]

Therefore at least one of these assignments must have the desired
expectation and we can decide this by computing the expectation
knowing the sign of x1 in each clause to which it belongs.

Having set x1 appropriately, we then can consider the next variable
always maintaining the weight of satisfied clauses and the number of
literals in each unsatisfied clause.

Historical fact: The derandomized version of this algorithm is called
Johnson’s algorithm and was shown by Johnson well before it was
realized (by Yannakakis) that Johnson’s algorithm was the
derandomized version.

23 / 25



From good expectation to good probability for
almost the expectation

In some sense the Exact Max-k-Sat randomized algorithm is an
example of random sampling.

For any exact k-CNF formula, if we simply try a random truth
assignment τ , it is “likely” to satisfy a “good” number of clauses.

I Let’s consider the number of unsatisfied clauses.
I Given the expectation E , we can use Markovs inequality to show that

P[# of unsatisfied clauses ≥ c · E ] ≤ 1

c

I For example, if say c = 8/7, then the probability is at most 7/8.

24 / 25



Probability Amplification

We have just shown that

P[# of unsatisfied clauses ≥ c · E ] ≤ 1

c

To drive this probability down, independently repeat the “trial” t
times so that the probability of always finding a τ with more than
(8/7) · E unsatisfied clauses is at most (7/8)t .

For example, for k = 3, we expect a 1/8 fraction of unsatisfied
clauses, and the probability of always getting more than a 1/7
fraction unsatisfied is then at most (7/8)t .

This idea of repeated independent trials is a key aspect of randomized
algorithms.

Useful fact:
(
1− 1

t

)t ≤ 1/e for all t and limits to 1/e as t →∞.

25 / 25


