
CSC 373: Algorithm Design and Analysis
Lecture 22

Allan Borodin

March 13, 2013

1 / 17

Announcements and Outline

Announcements

Lecture this Friday

Today’s outline

Almost new topic: start or rather return to local search

Max Cut

Exact Max-2-Sat

2 / 17

Local search: the other conceptually simplest
approach for solving search/optimization problems

We now begin a discussion of the other (than greedy) conceptually
simplest search/optimization algorithm, namely local search.

The vanilla local search paradigm

1: Initialize S
2: while there is a “better” solution S ′ in “Nbhd(S)” do
3: S := S ′

4: end while

If and when the algorithm terminates, the algorithm has computed a local
optimum. To make this a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?
2 What consititutes a local neighbourhood Nbhd(S)?
3 What do we mean by “better”?

Answering these questions (especially as to defining local neighbourhood)
will often be quite problem specific.

3 / 17

Towards a precise definition for local search

On choosing an initial solution

We clearly want the initial solution to be efficiently computed

And to that end (so as to be precise) we can (for example) say that
the initial solution is a random solution, or a greedy solution or
adversarially chosen.

Of course, in practice we can use any efficiently computed solution
and this is done in practice.

For an optimization problem, we usually begin with a feasible initial
solution. For a search problem, we will (necessarily) start with a
non-feasible solution.

We will focus on local search for optimization problems.

4 / 17

Choosing the local neighbourhood

We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S ′ | dH(S ,S ′) ≤ k} for some small k where dH(S ,S ′) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain
D, we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) = |D|k . Hence if
necessary, the neighbourhood can be exhaustively search for a better
solution.

3 We can view Ford Fulkerson flow algorithms as local search algorithms
where the neighbourhood of a solution S (i.e. a flow) are flows
obtained by adding an augmenting path flow. This is an exponential
size neighbourhood but one that can be searched efficiently.

5 / 17

What does “better” solution mean?
Oblivious and non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search.

For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

And in searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

For efficiency we may insist that there is a “sufficient” improvement.

6 / 17

The weighted max cut problem

Our first local search algorithm will be for the (weighted) max cut
problem that we formalized in our discussion of IPs.

The (weighted) max-cut problem

I Given a (undirrected) graph G = (V ,E) and in the weighted case the edges
have non negative weights.

I Goal: Find a partition (A,B) so as to maximize the size (or weight) of the
cut E ′ = {(u, v)|u ∈ A, v ∈ B, (u, v) ∈ E}.

We can think of the partition as a characteristic vector χ in {0, 1}n
where n = |V |. Namely, say χi = 1 iff vi ∈ A.

Let Nd(A,B) = {(A′,B ′) | the characteristic vector of the cut
(A′,B ′) is Hamming distance at most d from the characteristic vector
for (A,B)}

So what is a natural local search algorithm for (weighted) max cut?

7 / 17

A natural oblivious local search for weighted max cut

Single move local search for weighted max cut

1: Initialize (A,B) arbitrarily
2: while there is a better partition (A′,B ′) ∈ N1(A,B) do
3: (A,B) := (A′,B ′)
4: end while

This single move local search algorithm is a 1
2 approximation; that is,

when the algorithm terminates, the value of the computed local
optimum will be at least half of the (global) optimum value.
In fact, if W is the sum of all edge weights, then w(A,B) ≥ 1

2W .
This kind of ratio is sometimes called the absolute ratio or totality
ratio and the approximation ratio must be at least this good.
The worst case (over all instances and all local optima) of a local
optimum to a global optimum is called the locality gap.
It may be possible to obtain a better approximation ratio than the
locality gap but the approximation ratio is at least as good as the
locaity gap.

8 / 17

Proof of totality gap for the max cut single move
local search

The proof is based on the following property of any local optimum:∑
v∈A

w(u, v) ≤
∑
v∈B

w(u, v) for every u ∈ A

Summing over all u ∈ A, we have:

2
∑
u,v∈A

w(u, v) ≤
∑

u∈A,v∈B
w(u, v) = w(A,B)

Repeating the argument for B we have:

2
∑

u,v∈B
w(u, v) ≤

∑
u∈A,v∈B

w(u, v) = w(A,B)

Adding these two inequalites and dividing by 2, we get:∑
u,v∈A

w(u, v) +
∑

u,v∈B
w(u, v) ≤ w(A,B)

Adding w(A,B) to both sides we get the desired W ≤ 2w(A,B).
9 / 17

The complexity of the single move local search

Claim: The local search algorithm terminates on every input
instance.

I Why?

Although it terminates, the algorithm could run for exponentially
many steps.

It seems to be an open problem if one can find a local optimum in
polynomial time.

However, we can achieve a ratio as close to the state 1
2 totality ratio

by only continuing when we find a solution (A′,B ′) in the local
neighborhood which is “sufficiently better”. Namely, we want

w(A′,B ′) ≥ (1 + ε)w(A,B) for any ε > 0

This results in a totality ratio 1
2(1+ε) with the number of iterations

bounded by n
ε logW .

10 / 17

Final comment on this local search algorithm

It is not hard to find an instance where the single move local search
approximation ratio is 1

2 .

Furthermore, for any constant d , using the local Hamming
neighbourhood Nd(A,B) still results in an approximation ratio that is
essentially 1

2 . And this remains the case even for d = o(n).

It is an open problem as to what is the best “combinatorial
algorithm” that one can achieve for max cut.

As previously mentioned there is a vector program relaxation of a
quadratic program that leads to a .878 approximation ratio.

11 / 17

Exact Max-2-Sat

Given: An exact 2-CNF formula

F = C1 ∧ C2 ∧ . . . ∧ Cm,

where Ci = (`1i ∨ `2i) and `ji ∈ {xk , x̄k | 1 ≤ k ≤ n} .

In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment τ so as to maximize

W (τ) = w(F | τ),

the weighted sum of satisfied clauses w.r.t the truth assignment τ .

12 / 17

The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood

Nd(τ) = {τ ′ | τ and τ ′ differ on at most d variables}

Oblivious local search for Exact Max-2-Sat

1: Choose any initial truth assignment τ
2: while there exists τ̂ ∈ Nd(τ) such that W (τ̂)>W (τ) do
3: τ := τ̂
4: end while

13 / 17

How good is this algorithm?

Note: in what follows I will use approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio is 2
3 .

In fact, for every formula, the algorithm finds an assignment τ such
that W (τ) ≥ 2

3

∑m
i=1 wi , the weight of all clauses, and we say that

the “totality ratio” is at least 2
3 .

(More generally for Exact Max-k-Sat the ratio is k
k+1).

This ratio is essentially a tight ratio for any d = o(n).

This is in contrast to a naive greedy algorithm derived from a
randomized algorithm that achieves totality ratio (2k − 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with the greedy algorithm
and then apply local search.

14 / 17

Analysis of the oblivious local search for Exact
Max-2-Sat

Let τ be a local optimum and let
I S0 be those clauses that are not satisfied by τ
I S1 be those clauses that are satisfied by exactly one literal by τ
I S2 be those clauses that are satisfied by two literals by τ

Let W (Si) be the corresponding weight.

We will say that a clause involves a variable xj if either xjor x̄j occurs
in the clause. Then for each j , let

I Aj be those clauses in S0 involving the variable xj .
I Bj be those clauses C in S1 involving the variable xj such that it is the

literal xj or x̄j that is satisfied in C by τ .

Let W (Aj),W (Bj) be the corresponding weights.

15 / 17

Analysis of the oblivious local search (continued)

Summing over all variables xj , we get
I 2W (S0) =

∑
j W (Aj) noting that each clause in S0 gets counted twice.

I W (S1) =
∑

j W (Bj)

Given that τ is a local optimum, for every j , we have

W (Aj) ≤W (Bj)

or else flipping the truth value of xj would improve the weight of the
clauses being satisfied.

Hence (by summing over all j),

2W0 ≤W1.

16 / 17

Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S0)

W (S0) + W (S1) + W (S2)
≤ W (S0)

3W (S0) + W (S2)
≤ W (S0)

3W (S0)

It is not easy to verify but there are examples showing that this 2
3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4
5 whenever d < n/2. For

d = n/2, the algorithm would be optimal.

In the weighted case, as in the max-cut problem, we have to worry
about the number of iterations. And here again we can speed up the
termination by insisting that any improvement has to be sufficiently
better.

17 / 17

