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Announcements and Outline

Announcements

I hope to have the term tests available at the tutorials today. Many
people had trouble with the NP material and that will be what is
discussed today in tutorial.

Statue of limitations for requests for regrading. We will only entertain
requests for regrading (outside of clerical errors) for 2 weeks after the
work is returned to the class. There are many assignments and tests
that have not been collected.

Today’s outline

Clarifying some remarks on the integrailty gap

The makespan problem

Max cut as an IP and a quadratic program

Duality
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Review: the integrality gap for vertex cover

For the complete (unweighted) graph on n nodes, the optimal IP
value is n − 1, whereas the LP optimum value is n/2.

For a given IP/LP formulation of a minimization problem, the
integrality gap is the worst case (over all input instances) ratio of an
integral optimum value to a fractional (LP) optimum value.

The approximation analysis show that this ratio is at most 2 and the
previous example shows that it is at least (2− 1

n ).

There are many ways to “tighten” the IP formulation. But for any
known polynomial time approach for adding additional constraints,
the integrality gap essentially remains at 2.

Informal but commonly used claim

The integrality gap provides a limit to obtaining an approximation using a
particular IP/LP formulation of a problem.
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Reflecting on the integrality gap

Informal but commonly used claim

The integrality gap provides a limit to obtaining an approximation using a
particular IP/LP formulation of a problem.

For the n node cycle, the optimum IP solution is dn/2e and the LP
OPT is n/2. Note that for n odd, an (optimal) LP solver would not
return an integral solution and naive rouding would double the cost of
the resulting integral solutuon.

A naive rounding would then be (at best) a 2− o(1)-approximation.

Note that the integrality gap for a particular IP/LP formulation does
not depend on the method of rounding but still in practice it has been
a limitation on the approximation ratios obtained.

It is NP hard to obtain an approximation better than ≈ 1.38 and
there is a complexity conjecture (much stronger than P 6= NP) that
implies that it is not possible to obtain a 2− ε approximation in
polynomial time (for any ε > 0). .
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Makespan for the unrelated machines model

The makespan problem for the unrelated machines model

The input consists of n jobs J = {J1, . . . , Jn} and m machines
M1, . . . ,Mm.

Each job Jj is represented by a vector 〈p1j , p2j , . . . , pmj〉 where pij
represents the processing time of job Jj on machine i .

Without loss of generality, we assume m ≤ n.

Goal: Minimize the latest finishing time (maximum load) over all
machines.

We will sketch a 2-approximation IP/LP with non näıve rounding
algorithm.

This is the best known poly-time approximation.

It is known that it is NP-hard to achieve better than 3
2 -approximation

even for the special case of the restrictive machines model for which
every pij is either some pj or ∞.
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In the IP formulation, the problem is:

minimize t

s.t.
m∑
i=1

xij = 1 for each job Jj

n∑
j=1

pijxij ≤ t for each machine Mi

xij ∈ {0, 1} for i = 1, . . . ,m and j = 1, . . . , n

The intended meaning is that xij = 1 iff job Jj is scheduled on
machine Mi .

The LP relaxation is that 0 ≤ xij . The condition xij ≤ 1 is implied.

The integrality gap is unbounded! Why?. How do we get around this
unbounded integrality gap?
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Getting around the integrality gap

Consider one job with procesing time m, which has OPT = m and
OPTLP = 1.

The IP must set xij = 0 if pij > t whereas the fractional OPT does
not have this constraint.

We want to say for all (i , j): “if pij > t then xij = 0”. But this isn’t a
linear constraint!

Since we are only hoping for a good approximation, we can assume all
pij are integral.

We can then use binary search to find the best LP bound T by solving
the search problem LP(T ) which eliminates the objective function
(i.e. setting it to a constant 1) and removes any xij having pij > T .

We clearly have that OPTIP ≥ T .
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Rounding of LP(T ) solution

The rounding here is not näıve. In general, rounding just means
converting a rational solution (for an LP relaxation) to some integral
solution. This might be done in stages, say first obtaining some
integral non-solution and then adjusting to a feasible solution.

The LP(T ) solution x∗ij is the solution of a system of m + n equations
over the mn variables xij .

LP Theory tells us that when this system has a solution, there is a
(so-called basic) solution x∗ij with at most m + n positive values.

This implies by counting that there are at most m fractional (not
integral) values.

If x∗ij = 1 then we assign job j to machine i . The remaining part of
the proof (using more LP theory) is to show that there is a matching
between the fractional x∗ij and the machines.
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A non obvious IP representation

Consider the Max Cut problem.

We can think of a solution as a choice about which vertices to (say)
put into A in an (A,B) cut.

We could have variables yi ∈ {+1,−1} with the intended meaning
yi = 1 (resp −1) iff vertex vi ∈ A (resp. B).

Then we would want to

I maximize
∑

1≤i<j≤n

1

2
w(i , j)(1− yiyj)

I subject to yi ∈ {+1,−1} ( i.e. y2
i = 1)

Problem

While this is a very useful quadratic program (and a .878 approx using a
vector program relaxation), it is NOT a linear program.
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Max cut as an IP

Instead we will think of a cut as the edges crossing the cut(A,B)

And have a variable xe ∈ {0, 1} for every edge e = (u, v) with the
intended meaning that xe = 1 iff (u, v) is in the cut.

Now we need to find inequalities that ensure the set {xe | xe = 1}
defines a cut.

This isn’t at all obvious but here is what works.

maximize
∑
e∈E

wexe

subject to xe ∈ {0, 1} for every e ∈ E

xij + xjk ≥ xik for every triangle (vi , vj , vk)

xij + xik + xjk ≤ 2
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Why does this work?

maximize
∑
e∈E

wexe

subject to xe ∈ {0, 1} for every e ∈ E

xij + xjk ≥ xik for every triangle (vi , vj , vk)

xij + xik + xjk ≤ 2

You can think of these “triangle inequalities” as saying that the
possible sizes of a cut for each triangle are 0 or 2.

Clearly every cut must satisfy these constraints!
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Why does this work? (continued)

maximize
∑
e∈E

wexe

subject to xe ∈ {0, 1} for every e ∈ E

xij + xjk ≥ xik for every triangle (vi , vj , vk)

xij + xik + xjk ≤ 2

Claim

Every {0, 1} solution of this IP defines a cut.

Define a relation i ∼ j if xij = 0 or i = j .
Claim 1: This is an equivalence relation.

I Transitivity is the only thing to check.
I By the triangle condition xij = xik = 0 implies xjk = 0.

Claim 2: There are at most 2 equivalence classes.
I This follows from the second triangle condition.
I If i , j , k are in three different classes, then xij + xik + xjk = 3.

Hence, the equivalence classes are the cut.
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Duality
NOTE:

We will not have time to sufficiently consider duality so that I will not be
testing on the following material. But I am leaving the slides for your
information as this is an important topic.

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.
Specifically, if the primal P (with n variables and m constraints) is:

I Minimize c · x
I subject to A · x ≥ b
I x ≥ 0

Then the dual LP D with m dual variables y and n constraints is:
I Maximize b · y
I subject to Atr · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in 1-1 correspondence
to primal (resp. dual) constraints.
If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.
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The intuitive idea of duality

Consider the following discussion in V. Vazirani’s text:

minimize 7x1 + x2 + 5x3

subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

It is obvious how to verify (with a “small” certificate being a solution)
that OPT ≤ U for some given U

But how can we verify that OPT ≥ L for some given L ?
1 7x1 + x2 + 5x3 ≥ x1 − x2 + 3x3 ≥ 10
2 Better bound (looking at each coef of xi ):

7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16

3 And even better bound:

7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
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What we have learned about this LP

We just showed that

7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26

And setting (x1, x2, x3) to (74 , 0,
11
4 ) we see that the primal is

≤ 7 ·
(

7

4

)
+ 1(0) + 5 ·

(
11

4

)
=

104

4
= 26

Hence the primal and the dual = 26.

The idea was to find the best choice of non-negative multipliers y1
and y2 so that

7x1 + x2 + 5x3 ≥ y1(x1 − x2 + 3x3) + y2(5x1 + 2x2 − x3)
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The original LP:

minimize 7x1 + x2 + 5x3

subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

We have shown that solving this problem is the same as finding the
best choice of non-negative multipliers y1 and y2 so that

7x1+x2+5x3 ≥ y1(x1−x2+3x3)+y2(5x1+2x2−x3) ≥ y1(10)+y2(6)

This leads to the dual problem:

maximize 10y1 + 6y2

subject to y1 + 5y2 ≤ 7

− y1 + 2y2 ≤ 1

3y1 − 2y2 ≤ 5
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Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

Moreover, the relation between the primal P and the dual D will lead
to Primal-Dual algorithms and to dual fitting analysis.

In what follows we will assume the primal is a minimization problem
to simplify the exposition.
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Strong and Weak Duality

Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then D(y∗) = P(x∗).

Note

Before it was known that solving LPs was in polynomial time, it was observed that
strong duality proves that LP (as a decision problem) is in NP ∩ co-NP which
strongly suggested that LP was not NP-complete.

Weak Duality

If x and y are primal and dual solutions respectively, then D(y) ≤ P(x).

Duality was motivated by asking how one can verify that the minimum in the primal
is at least some value z .

To get witnesses, one can explore non-negative scaling factors (i.e. the dual
variables) that can be used as multipliers in the constraints.
The multipliers, however, must not violate the objective (i.e cause any multiplies
of a primal variable to exceed the coefficient in the objective) we are trying to
bound.
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Max flow-min Cut in terms of duality

While the max flow problem can be naturally formulated as an LP, the
natural formulation for min cut is as an IP.

I However, for this IP, it can be shown that the extreme point solutions (i.e. the
vertices of the polyhedron defined by the constraints) are all integral {0,1} in
each coordinate.

I Moreover (see Vazarani, section 12.2) max flow and min cut can be viewed as
dual problems.

Suppose we formulate max flow in standard LP form so that all flows (i.e. the
LP variables) are non-negative.
And to state the objective as a simple linear function (of the flows) we add an
edge of infinite capacity from the terminal t to the source s and hence define
a circulation problem.

The max flow LP

maximize ft,s
subject to fi ,j ≤ ci ,j for all (i , j) ∈ E∑

j :(j ,i)∈E fj ,i −
∑

j :(i ,j)∈E fi ,j ≤ 0 for all i ∈ V
fi ,j ≥ 0 for all (i , j) ∈ E
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Max flow-min cut duality continued

For the primal edge capacity constraints, introduce dual (“distance”) variables
di ,j and for the vertex flow conservation constraints, introduce dual (“potential”)
variables pi .

The fractional min cut dual

minimize
∑

(i ,j)∈E ci ,jdi ,j
subject to di ,j − pi + pj ≥ 0

ps − pt ≥ 1
di ,j ≥ 0; pi ≥ 0

Now consider the IP restriction : di ,j , pi ∈ {0, 1} and let {(d∗i ,j , p∗i )} be an
intergal optimum.
The {0, 1} restriction and second constraint forces p∗s = 1 and p∗t = 0.
The IP optimum defines a cut (S ,T ) with S = {i | p∗i = 1} and
T = {i | p∗i = 0}.
Suppose (i , j) is in the cut, then p∗i = 1, p∗j = 0 which by the first constraint
forces di ,j = 1.
The optimal {0, 1} IP solution (of the dual) defines a a min cut.
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Another example: the dual of set cover

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj ≥ 1 for all i

xj ∈ {0, 1} for all j (for LP we use xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0 for all i

If all the parameters in a standard form minimization (resp.
maximization) problem are non negative, then the problem is called a
covering (resp. packing) problem.

Note that the set cover problem is a covering problem and its dual is
a packing problem.
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Solving the f -frequency set cover by a primal dual
algorithm

In the f -frequency set cover problem, each element is contained in at
most f sets.

Clearly, the vertex cover problem is an instance of the 2-frequency set
cover.
As in the vertex cover LP rounding, we can similarly solve the
f -frequency cover problem by obtaining an optimal solution {x∗j } to

the (primal) LP and then rounding to obtain x̄j = 1 iff x∗j ≥
1
f .

I This is, as noted before, a conceptually simple method but requires
solving the LP.

We know that for a minimization problem, any dual solution is a
lower bound on any primal solution.

I One possible goal in a primal dual method for a minimization problem
will be to maintain a fractional feasible dual solution and continue to
try improve the dual solution.

I As dual constraints become tight we then set the corresponding primal
variables.
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Primal dual for f -frequency set cover continued

Suggestive lemma

Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i
C′ := ∅
While there exists an ei not covered by C′

Increase the dual variable yi until there is some j :
ei ∈ Sj and

∑
{k:ei∈Sj} yj = wj

C′ := C′ ∪ {Sj}
End While

Theorem (Approximation bound for f -frequency set cover)

The primal dual solution is an f approximation.
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Comments on the primal dual algorithm

What can be shown is that the integral primal solution is within a
factor of f of the dual solution which implies the theorem that the
primal dual algorithm is an f -approximation algorithm for the
f -frequency set cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set.

I This ε could be 0 if a previous iteration had more than one constraint
that becomes tight simultaneously.

I This ε would then be subtracted from wj for j such that ei ∈ Sj .
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More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem.

I Namely, we start with an infeasible integral primal solution and feasible
(fractional) dual.

I (For a covering primal problem and dual packing problem, the initial
dual solution can be the all zero solution.)

I Unsatisfied primal constraints suggest which dual constraints might be
tightened and when one or more dual constraints become tight this
determines which primal variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality.

Note

In the primal dual method we are not solving any LPs. Primal dual
algorithms are viewed as “combinatorial algorithms” and in some cases
they might even suggest an explicit (and efficient) greedy algorithm.
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