CSC 373: Algorithm Design and Analysis Lecture 20

Allan Borodin

March 6, 2013

Announcements and Outline

Announcements

- No lecture this Friday
- Question: How was the test?

Today's outline

- Continue LP relaxation of an IP and rounding to an integral solution.
- Integrality gap for the basic IP/LP for the vertex cover problem.
- Set Cover
- A ring routing problem
- The makespan problem in the unrelated machines model

Review of the IP formulation for vertex cover and its LP relaxation

- We discuss weighted vertex cover as a {0,1} IP.
- We will discuss its LP relaxation and "naïve" and why this provides a 2-approximation.
- The integrality gap of this IP/LP relaxation is $2 \frac{1}{n}$. Adding some additional inequalities (say corresponding to odd cycles) does not help to improve the integrality gap.
- In general there will be many IP formulations for a given problem. An integrality gap pertains to one (or a class of) IP/LP relaxations.
- Despite considerable effort, there is no known polynomial time algorithm that achieves a 2ϵ approximation for any $\epsilon > 0$ even for the unweighted case.

An IP for weighted vertex cover

IP formula for weighted vertex cover

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^{n} w_j \cdot x_j \\ \text{s.t.} & x_i + x_j \geq 1 \\ & x_i \in \{0,1\} \end{array} & \qquad \text{for each edge } (i,j) \in E \\ & \text{for each } i = 1, \dots, n \end{array}$$

- The intended meaning is that $x_i = 1$ iff vertex v_i is in the cover.
- The LP relaxation is to relax the integrality condition $x_i \in \{0, 1\}$ to $x_i \ge 0$.
- In this problem it follows that an optimal LP solution also satisfies $x_i \leq 1$.

Rounding an LP optimal solution

• Suppose x* is an LP optimum.

• We can apply a "naïve" rounding (naive in the sense that the rounding ignores the input) to the fractional solution by setting $x'_i = 1 \text{ iff } x^*_i \ge 1/2$

• Claim: x' is an integral solution to the IP and hence $V' = \{v_i | x'_i = 1\}$ is a vertex cover. Why?

Claim

The weight of the cover V' is at most twice the weight of an optimal cover.

Proof.

- Because the LP is a relaxation, it also allows IP solutions. Thus, $OPT_{LP} \leq OPT_{IP}$.
- Then we have $w(V') \leq 2 \cdot OPT_{LP} \leq 2 \cdot OPT_{IP}$.

The integrality gap

- For the complete (unweighted) graph on n nodes, the optimal IP value is n − 1, whereas the LP optimum value is n/2.
- For a given IP/LP formulation of a minimization problem, the integrality gap is the worst case (over all input instances) ratio of an integral optimum value to a fractional (LP) optimum value.
- The approximation analysis show that this ratio is at most 2 and the previous example shows that it is at least $(2 \frac{1}{n})$.
- For the *n* node cycle, the optimum IP solution is [n/2] and the LP OPT is n/2. A naive rounding would be (at best) a 2-approximation.
- For any known polynomial time approach to add additional constraints, the integrality gap essentially remains at 2.

Informal but commonly used claim

The integrality gap provides a limit to obtaining an approximation using a particular IP/LP formulation of a problem.

Set cover

The set cover problem

- Given a collection of (possibly weighted) sets $C = \{S_1, \ldots, S_m\}$ where $S_i \subseteq U$.
- Goal: Find a minimal size (weight) subcollection C' that covers all the elements in the universe U.
- Set cover generalizes vertex cover and turns out to be NP-hard to approximate better than H_n where n = |U|. Recall that

 $H_n = \sum_{k=1}^n 1/k \approx \ln n$

- There is a natural greedy algorithm that will achieve an approximation of H_d where $d = max_i|S_i|$.
- Unless all problems in NP can be computed in time n^{O(log log n)}, it is not possible to approximate the set cover problem to within a factor (1 − ε) ln n for any ε > 0.

Set cover and the *f*-frequency set cover problem

• We can express the set cover problem as an IP.

- In the *f*-frequency set cover problem, we assume that every element occurs in at most *f* sets.
- Vertex cover is a 2-frequency set cover problem. Why? What are the elements and what are the sets?

Rounding the LP to obtain an approximation algorithm

- For the *f*-frequency set cover problem, we can relax it to an LP in the same way that we represented and provided an approximation for the vertex cover problem.
- We solve the LP optimally to obtain a solution x^{*} and then round by setting

 $x_i' = 1$ iff $x_i^* \ge 1/f$

• Similar to the vertex cover approximation, this yields an *f*-approximation algorithm for the *f*-frequency set cover problem.

Ring routing: another IP/LP with naive rounding

The call routing problem

• There is an *n* node bi-directional ring network G = (V, E) upon which calls must be routed, where

$$V = \{0, 1, \dots, n-1\}$$

E = {(i, i+1 mod n)} \cup {(i, i-1 mod n)}

- Calls c_j are pairs (s_j, f_j) originating at node s_j and terminating at node f_j .
- Each call can be routed in a clockwise or counter-clockwise direction.
- The load *L_e* on any directed edge is the maximum number of calls routed on this directed edge.
- Goal: Minimize $max_{e \in E}L_e$.

We can achieve a 2-approximation by an LP relaxation of a natural IP followed by a naive rounding just as in the vertex cover example.

The ring routing example continued

- To formulate this problem as an IP, for each call we will introduce variables x_j and y_j that indicate the direction of call c_j.
- (You can also use just one indicator variable to represent the direction but I think it might be easier to think in terms of two such variables.)

Recall: the makespan problem

The makespan problem for the identical machines model

- The input consists of *n* jobs $\mathcal{J} = \{J_1, \ldots, J_n\}$ that are to be scheduled on *m* identical machines.
- Each job J_k is described by a processing time (or load) p_k .
- **Goal:** Minimize the latest finishing time (maximum load) over all machines.

Makespan for the unrelated machines model

The makespan problem for the unrelated machines model

- The input consists of *n* jobs $\mathcal{J} = \{J_1, \ldots, J_n\}$ and *m* machines M_1, \ldots, M_m .
- Each job J_j is represented by a vector $\langle p_{1j}, p_{2j}, \dots, p_{mj} \rangle$ where p_{ij} represents the processing time of job J_j on machine *i*.
- Without loss of generality, we assume $m \leq n$.
- **Goal:** Minimize the latest finishing time (maximum load) over all machines.
- We will sketch a 2-approximation IP/LP with non naïve rounding algorithm.
- This is the best known poly-time approximation.
- It is known that it is NP-hard to achieve better than $\frac{3}{2}$ -approximation even for the special case of the restrictive machines model for which every p_{ij} is either some p_j or ∞ .

• In the IP formulation, the problem is:

minimize ts.t. $\sum_{i=1}^{m} x_{ij} = 1$ for each job J_j $\sum_{j=1}^{n} p_{ij} x_{ij} \leq t$ for each machine M_i $x_{ij} \in \{0,1\}$ for $i = 1, \dots, m$ and $j = 1, \dots, n$

- The intended meaning is that $x_{ij} = 1$ iff job J_j is scheduled on machine M_i .
- The LP relaxation is that $0 \le x_{ij}$. The condition $x_{ij} \le 1$ is implied.
- The integrality gap is unbounded! Why?. How do we get around this unbounded integrality gap?