
CSC 373: Algorithm Design and Analysis
Lecture 20

Allan Borodin

March 6, 2013

1 / 14

Announcements and Outline

Announcements

No lecture this Friday

Question: How was the test?

Today’s outline

Continue LP relaxation of an IP and rounding to an integral solution.

Integrality gap for the basic IP/LP for the vertex cover problem.

Set Cover

A ring routing problem

The makespan problem in the unrelated machines model

2 / 14

Review of the IP formulation for vertex cover and
its LP relaxation

We discuss weighted vertex cover as a {0, 1} IP.

We will discuss its LP relaxation and “näıve” and why this provides a
2-approximation.

The integrality gap of this IP/LP relaxation is 2− 1
n . Adding some

additional inequalities (say corresponding to odd cycles) does not help
to improve the integrality gap.

In general there will be many IP formulations for a given problem. An
integrality gap pertains to one (or a class of) IP/LP relaxations.

Despite considerable effort, there is no known polynomial time
algorithm that achieves a 2− ε approximation for any ε > 0 even for
the unweighted case.

3 / 14

An IP for weighted vertex cover

IP formula for weighted vertex cover

minimize
n∑

j=1

wj · xj

s.t. xi + xj ≥ 1 for each edge (i , j) ∈ E

xi ∈ {0, 1} for each i = 1, . . . , n

The intended meaning is that xi = 1 iff vertex vi is in the cover.

The LP relaxation is to relax the integrality condition xi ∈ {0, 1} to
xi ≥ 0.

In this problem it follows that an optimal LP solution also satisfies
xi ≤ 1.

4 / 14

Rounding an LP optimal solution

Suppose x∗ is an LP optimum.

We can apply a “näıve” rounding (naive in the sense that the
rounding ignores the input) to the fractional solution by setting

x ′i = 1 iff x∗i ≥ 1/2

Claim: x ′ is an integral solution to the IP and hence
V ′ = {vi | x ′i = 1} is a vertex cover. Why?

Claim

The weight of the cover V ′ is at most twice the weight of an optimal cover.

Proof.

Because the LP is a relaxation, it also allows IP solutions. Thus,
OPTLP ≤ OPTIP .

Then we have w(V ′) ≤ 2 · OPTLP ≤ 2 · OPTIP .

5 / 14

The integrality gap

For the complete (unweighted) graph on n nodes, the optimal IP
value is n − 1, whereas the LP optimum value is n/2.

For a given IP/LP formulation of a minimization problem, the
integrality gap is the worst case (over all input instances) ratio of an
integral optimum value to a fractional (LP) optimum value.

The approximation analysis show that this ratio is at most 2 and the
previous example shows that it is at least (2− 1

n).

For the n node cycle, the optimum IP solution is dn/2e and the LP
OPT is n/2. A naive rounding would be (at best) a 2-approximation.

For any known polynomial time approach to add additional
constraints, the integrality gap essentially remains at 2.

Informal but commonly used claim

The integrality gap provides a limit to obtaining an approximation using a
particular IP/LP formulation of a problem.

6 / 14

Set cover

The set cover problem

Given a collection of (possibly weighted) sets C = {S1, . . . ,Sm} where
Si ⊆ U.

Goal: Find a minimal size (weight) subcollection C′ that covers all
the elements in the universe U.

Set cover generalizes vertex cover and turns out to be NP-hard to
approximate better than Hn where n = |U|. Recall that

Hn =
∑n

k=1 1/k ≈ ln n

There is a natural greedy algorithm that will achieve an
approximation of Hd where d = maxi |Si |.
Unless all problems in NP can be computed in time nO(log log n), it is
not possible to approximate the set cover problem to within a factor
(1− ε) ln n for any ε > 0.

7 / 14

Set cover and the f -frequency set cover problem

We can express the set cover problem as an IP.

IP formula for set cover

minimize
n∑

j=1

wj · xj

s.t.
∑
i :e∈Si

≥ 1 for each element e ∈ U

xi ∈ {0, 1} for each i = 1, . . . , n

In the f -frequency set cover problem, we assume that every element
occurs in at most f sets.

Vertex cover is a 2-frequency set cover problem. Why? What are the
elements and what are the sets?

8 / 14

Rounding the LP to obtain an approximation
algorithm

For the f -frequency set cover problem, we can relax it to an LP in the
same way that we represented and provided an approximation for the
vertex cover problem.

We solve the LP optimally to obtain a solution x∗ and then round by
setting

x ′i = 1 iff x∗i ≥ 1/f

Similar to the vertex cover approximation, this yields an
f -approximation algorithm for the f -frequency set cover problem.

9 / 14

Ring routing: another IP/LP with naive rounding

The call routing problem

There is an n node bi-directional ring network G = (V ,E) upon
which calls must be routed, where

V = {0, 1, . . . , n − 1}
E = {(i , i + 1 mod n)} ∪ {(i , i − 1 mod n)}

Calls cj are pairs (sj , fj) originating at node sj and terminating at
node fj .

Each call can be routed in a clockwise or counter-clockwise direction.

The load Le on any directed edge is the maximum number of calls
routed on this directed edge.

Goal: Minimize maxe∈ELe .

We can achieve a 2-approximation by an LP relaxation of a natural IP
followed by a naive rounding just as in the vertex cover example.

10 / 14

The ring routing example continued

To formulate this problem as an IP, for each call we will introduce
variables xj and yj that indicate the direction of call cj .
(You can also use just one indicator variable to represent the direction
but I think it might be easier to think in terms of two such variables.)

IP formula for ring routing

minimize L
subject to:

1

∑
j : cj routed clockwise

would use edge (i , i + 1) mod n

xj ≤ L for each edge (i , i + 1) mod n

2

∑
j : cj routed clockwise

would use edge (i , i − 1) mod n

yj ≤ L for each edge (i , i − 1) mod n

3 xj + yj = 1 for each i = 1, . . . , n

4 xj , yj ∈ {0, 1} for each i = 1, . . . , n
11 / 14

Recall: the makespan problem

The makespan problem for the identical machines model

The input consists of n jobs J = {J1, . . . , Jn} that are to be
scheduled on m identical machines.

Each job Jk is described by a processing time (or load) pk .

Goal: Minimize the latest finishing time (maximum load) over all
machines.

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥ 1

m

n�
j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

12 / 14

Makespan for the unrelated machines model

The makespan problem for the unrelated machines model

The input consists of n jobs J = {J1, . . . , Jn} and m machines
M1, . . . ,Mm.

Each job Jj is represented by a vector 〈p1j , p2j , . . . , pmj〉 where pij
represents the processing time of job Jj on machine i .

Without loss of generality, we assume m ≤ n.

Goal: Minimize the latest finishing time (maximum load) over all
machines.

We will sketch a 2-approximation IP/LP with non näıve rounding
algorithm.

This is the best known poly-time approximation.

It is known that it is NP-hard to achieve better than 3
2 -approximation

even for the special case of the restrictive machines model for which
every pij is either some pj or ∞.

13 / 14

In the IP formulation, the problem is:

minimize t

s.t.
m∑
i=1

xij = 1 for each job Jj

n∑
j=1

pijxij ≤ t for each machine Mi

xij ∈ {0, 1} for i = 1, . . . ,m and j = 1, . . . , n

The intended meaning is that xij = 1 iff job Jj is scheduled on
machine Mi .

The LP relaxation is that 0 ≤ xij . The condition xij ≤ 1 is implied.

The integrality gap is unbounded! Why?. How do we get around this
unbounded integrality gap?

14 / 14

