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Announcements and Qutline

Announcements
@ No lecture this Friday

@ Question: How was the test?

Today’s outline

Continue LP relaxation of an IP and rounding to an integral solution.
Integrality gap for the basic IP/LP for the vertex cover problem.

Set Cover

A ring routing problem

The makespan problem in the unrelated machines model
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Review of the IP formulation for vertex cover and
its LP relaxation

@ We discuss weighted vertex cover as a {0,1} IP.

@ We will discuss its LP relaxation and “naive” and why this provides a
2-approximation.

@ The integrality gap of this IP/LP relaxation is 2 — % Adding some
additional inequalities (say corresponding to odd cycles) does not help
to improve the integrality gap.

@ In general there will be many IP formulations for a given problem. An
integrality gap pertains to one (or a class of) IP/LP relaxations.

@ Despite considerable effort, there is no known polynomial time
algorithm that achieves a 2 — e approximation for any € > 0 even for
the unweighted case.



An IP for weighted vertex cover

IP formula for weighted vertex cover

n
minimize E Wi - Xj

j=1
st xj+x>1 for each edge (i,j) € E
x; € {0,1} foreachi=1,...,n

@ The intended meaning is that x; = 1 iff vertex v; is in the cover.

@ The LP relaxation is to relax the integrality condition x; € {0, 1} to
Xj 2 0.

@ In this problem it follows that an optimal LP solution also satisfies
x; < 1.



Rounding an LP optimal solution

@ Suppose x* is an LP optimum.

@ We can apply a “naive” rounding (naive in the sense that the
rounding ignores the input) to the fractional solution by setting

xi=1iff x*>1/2

@ Claim: x’ is an integral solution to the IP and hence
V' = {vj|x! =1} is a vertex cover. Why?

Claim
The weight of the cover V' is at most twice the weight of an optimal cover.

v

Proof.

@ Because the LP is a relaxation, it also allows IP solutions. Thus,
OPT. p < OPTp.

@ Then we have w(V') <2 OPT;p <2- OPTjp.




The integrality gap

For the complete (unweighted) graph on n nodes, the optimal IP
value is n — 1, whereas the LP optimum value is n/2.

For a given IP/LP formulation of a minimization problem, the
integrality gap is the worst case (over all input instances) ratio of an
integral optimum value to a fractional (LP) optimum value.

The approximation analysis show that this ratio is at most 2 and the
previous example shows that it is at least (2 — 1).

For the n node cycle, the optimum IP solution is [n/2] and the LP
OPT is n/2. A naive rounding would be (at best) a 2-approximation.

For any known polynomial time approach to add additional
constraints, the integrality gap essentially remains at 2.

Informal but commonly used claim

The integrality gap provides a limit to obtaining an approximation using a
particular IP/LP formulation of a problem.
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Set cover

The set cover problem

Given a collection of (possibly weighted) sets C = {51, ...,Sm} where
S, C U.

Goal: Find a minimal size (weight) subcollection C’ that covers all
the elements in the universe U.

Set cover generalizes vertex cover and turns out to be NP-hard to
approximate better than H, where n = |U|. Recall that

Hy=>4_11/k~1Inn |

There is a natural greedy algorithm that will achieve an
approximation of Hy where d = max;|S;|.

Unless all problems in NP can be computed in time n©(loglogn) it is
not possible to approximate the set cover problem to within a factor
(1 —¢€)Inn for any € > 0.



Set cover and the f-frequency set cover problem

@ We can express the set cover problem as an IP.

IP formula for set cover

J=1

s.t. Z >1 for each element e € U
i:e€S;
x; € {0,1} foreachi=1,...,n

@ In the f-frequency set cover problem, we assume that every element
occurs in at most f sets.

@ Vertex cover is a 2-frequency set cover problem. Why? What are the
elements and what are the sets?



Rounding the LP to obtain an approximation
algorithm

@ For the f-frequency set cover problem, we can relax it to an LP in the
same way that we represented and provided an approximation for the
vertex cover problem.

@ We solve the LP optimally to obtain a solution x* and then round by

setting
xi =1iff x* > 1/f

@ Similar to the vertex cover approximation, this yields an
f-approximation algorithm for the f-frequency set cover problem.



Ring routing: another IP/LP with naive rounding

The call routing problem

@ There is an n node bi-directional ring network G = (V/, E) upon
which calls must be routed, where

V=1{0,1,....,n— 1}
E={(i,i+1mod n)}U{(i,i—1 mod n)}

o Calls ¢; are pairs (s, f;) originating at node s; and terminating at
node f;.

@ Each call can be routed in a clockwise or counter-clockwise direction.

@ The load Le on any directed edge is the maximum number of calls
routed on this directed edge.

@ Goal: Minimize maxecglLe.

We can achieve a 2-approximation by an LP relaxation of a natural IP

followed by a naive rounding just as in the vertex cover example.
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The ring routing example continued

@ To formulate this problem as an IP, for each call we will introduce
variables x; and y; that indicate the direction of call ¢;.

@ (You can also use just one indicator variable to represent the direction
but | think it might be easier to think in terms of two such variables.)

IP formula for ring routing
minimize L
subject to:
(1) Z x; <L for each edge (i,i + 1) mod n

J : ¢j routed clockwise
would use edge (i,/ +1) mod n

Q Z yi <L for each edge (i,i — 1) mod n
J i ¢j routed clockwise
would use edge (i,/ —1) mod n
(3] xi+y =1 foreachi=1,... n
Q xj,y; € {0,1} foreachi=1,...,n

)
o
T/ T4




Recall: the makespan problem

The makespan problem for the identical machines model

@ The input consists of n jobs J = {J1,...,Jn} that are to be
scheduled on m identical machines.

@ Each job Jy is described by a processing time (or load) p.

@ Goal: Minimize the latest finishing time (maximum load) over all
machines.

makespan
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Makespan for the unrelated machines model

The makespan problem for the unrelated machines model

The input consists of n jobs J = {J1,...,J,} and m machines
M, ..., My

Each job J; is represented by a vector (pij, paj, ..., pmj) Where pj;
represents the processing time of job J; on machine i.

Without loss of generality, we assume m < n.

Goal: Minimize the latest finishing time (maximum load) over all
machines.

We will sketch a 2-approximation IP/LP with non naive rounding
algorithm.

This is the best known poly-time approximation.

It is known that it is NP-hard to achieve better than %—approximation
even for the special case of the restrictive machines model for which
every pj; is either some p; or oco.
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@ In the IP formulation, the problem is:

minimize t
m
s.t. Zx,-j =1 for each job J;
i=1
n
Zp,-jx,-j <t for each machine M;
j=1
xj € {0,1} fori=1,...,mandj=1,....n

@ The intended meaning is that x;; = 1 iff job J; is scheduled on
machine M;.

@ The LP relaxation is that 0 < x;;. The condition x;; < 1 is implied.

@ The integrality gap is unbounded! \Why?. How do we get around this
unbounded integrality gap?
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