
CSC 373: Algorithm Design and Analysis
Lecture 2

Allan Borodin

January 9, 2013

Some materials are from Kevin Wayne’s slides.

1 / 10

Lecture 2: Announcements and Outline

Announcements

As now changed on the web page, last assignment due April 1 (start
of lecture) and the last term test will be on April 3.

Most of Problem set 1 is now posted.

Pragmatic definition for avoiding plagarism.

Todays topics

Greedy algorithms for interval scheduling continued

Two proof techniques for proving optimality of earliest finish time
(EFT) greedy algorithm for interval scheduling

1 The inductive promising partial solution argument (as in KT-chapter 4)
2 The charging argument (Wikipedia points to a handout in a previous

CSC 373)

The JISP problem (EFT) greedy algorithm for interval scheduling

2 / 10

Greedy algorithms for interval scheduling

Interval Scheduling Problem

Job j starts at sj and finishes at fj .

Two jobs are compatible if they don’t overlap. (Allow fi = sj)

Goal: find maximum subset of mutually compatible jobs.

9

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

3 / 10

Interval Scheduling: Greedy Algorithm

Greedy template

Consider jobs in some natural order.

Take each job provided it’s compatible with the ones already taken.

1 Earliest start time: Consider jobs in ascending order of sj .
2 Earliest finish time: Consider jobs in ascending order of fj .
3 Shortest interval: Consider jobs in ascending order of fj − sj .
4 Fewest conflicts: For each job j , count the remaining number of

conflicting jobs cj . Schedule in ascending order of cj .

9

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

4 / 10

Interval Scheduling: Greedy Algorithm

Greedy template

Consider jobs in some natural order.

Take each job provided it’s compatible with the ones already taken.

5

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

6

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).

! Remember job j* that was added last to A.

! Job j is compatible with A if sj ! fj*.

Sort jobs by finish times so that f1 " f2 " ... " fn.

A # $

for j = 1 to n {

 if (job j compatible with A)

 A # A % {j}

}

return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

7

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

! Assume greedy is not optimal, and let's see what happens.

! Let i1, i2, ... ik denote set of jobs selected by greedy.

! Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

8

j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

! Assume greedy is not optimal, and let's see what happens.

! Let i1, i2, ... ik denote set of jobs selected by greedy.

! Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

5 / 10

Optimality of EFT Greedy algorithm

Earliest Finish Time (EFT) Algorithm

Consider jobs in ascending order of finishing time fj .
Take each job provided it’s compatible with the ones already taken.

9

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

Given the fact that some other reasonable greedy algorithms for the interval scheduling problem
do not yield optimal solutions, how can we be convinced that EFT is optimal?

6 / 10

Comments on the optimality of EFT

The proof outline shows that

The partial solution S(i) at the end of the ith iteration is promising in that
it can be extended to an optimal solution

(using intervals not yet considered).

This is not the only possible proof of this result. But before giving
another type of proof (a charging argument), you might rightfully ask

“why bother proving this?”

7 / 10

Why prove facts about a particular algorithm?

1 As we have seen, other reasonable (greedy) algorithms for ISP fail to
obtain an optimal solution (for all input instances).

I So while in hindsight we can motivate and convince ourselves that EFT
is optimal, we need a convincing argument (i.e. a proof at some level
of being convincing) that EFT is indeed optimal.

2 Proofs give us insight into the limitations of an algorithm and also
what is and isn’t necessary to establish the desired properties.

I For example, the proof does not rely on the exact manner in which we
break “ties” (between intervals with the same finishing time).

I Hence while an algorithm needs exact specification, any tie breaking
rule will work!

3 Proofs also can yield additional facts as we will see in the case of
interval colouring and MST problems

8 / 10

The charging argument for EFT optimality

The previous proof for the optmality of EFT is a proof technique that
seems mostly applicable to one pass algorithms, for example as in the
greedy (myopic) template.

The next proof technique (a charging argument) is more widely
applicable and easily adapts to approximation bounds for both
maximization and minimization problems. Here is the argument for
EFT maximization problem.

Charging argument for optimality of EFT

Let OPT (I) be any solution and in particular an optimal solution on
an (arbitrary) input instance I and let EFT (I) be the output of the
EFT algorithm.

Then we wish to show that we can construct a 1-1 function
h : OPT (I)→ EFT (I).

9 / 10

The EFT algorithm for the JISP problem

We consider an NP-hard variant of the interval scheduling problem
(ISP) called the job interval scheduling problem (JISP). An instance
I = {I1, . . . , In} has intervals Ij = (sj , fj , κj) where now κj is the job
class to which interval Ij belongs.

Jobs are compatible if they do not intersect (as before) and do not
belong to the same job class. That is, we can take at most one
interval from each job class.

Theorem (EFT applied to JISP)

The EFT algorithm when applied to the JISP problem produces a solution
which satisifies |OPT (I)| ≤ 2 · |EFT (I)| for every input instance I. That
is, EFT is a 2-approximation algorithm for JISP.

This 2-approximation bound can be proven by extending the EFT
optimality proof for the ISP problem to show that there is a 2-1
function h : OPT (I)→ EFT (I).

10 / 10

