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Announcements and Outline

Announcements

Term test today in tutorial rooms

Today’s outline

Integer Programming (IP) and Linear Programming (LP)

LP relaxation of an IP and rounding to an integral solution.
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How to read chapter 7 of text

Chapter 7 is a mixture of linear programming and max flow concepts
and the relation between these topics.

The chapter nicely motivates LP and discusses the simplex method
and duality.

We will postpone and de-emphasize the discussion of solving LPs and
duality.

Instead we will mainly be considering IP/LP rounding
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Expressing problems as IPs and LPs: motivating
examples

The text starts off with two specific examples, the first one being a
minimization problem where a carpet company wishes to minimize its
costs while meeting different monthly damands di for the carpets.
The carpet example is an example of an IP.

For each month, non-negative integer variables are introduced to represent
the number of workers employed wi , the number of carpets made in
regular time xi and overtime oi , the number of workers hired is hi and
fired fi at the start of month i , and the number of carpets that are in
storage si at the end of month i .

This results in 72 variables, 6 for each month.
There are labour costs (for regular and overtime), regulations as to
limits of overtime, HR costs to hire and fire, and storage costs.
This sounds like a rather daunting task for management to meet
demands, satisfy all the constraints and minimize total annual cost.
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Motivating example continued

But it turns out that the problem can be expressed as the
minimization of a linear function (in these integer variables) subject
to a set of linear equations and linear inequalities.
For example,

I The number of carpets in storage at the end of month i is ensured by
the constraint si = si−1 + xi − di .

I The number of carpets that can be produced overtime is given by the
constraint oi ≤ 6wi which follows from the limited overtime (30%) and
the number (20) of carpets a worker can produce in regular time during
a month.

One can then try to solve this with an IP solver. But a more efficient
approach is to let the variables be non-negative rational numbers and
then use an LP solver.
In this application rounding up the rational solution values would
probably not significantly change the costs.
In other applications there is no way (say assuming P 6= NP) to round
rational solution values without significantly impacting the objective
function.
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Representing the max flow problem as an LP

We will now adopt the more traditional formulation of flows where all
flows are non-negative.

To represent this problem as an LP, we introduce non-negative
rational variables fe for each edge e ∈ E . The input is the flow
network including the capacities ce for each edge.

The goal now is to maximize
∑

(s,u)∈E fsu
subject to:

1 0 ≤ fe ≤ ce for all e ∈ E (capacity constraint)
2

∑
(w ,u)∈E fwu =

∑
(u,z)∈E fuz for all u 6= s, t (flow in = flow out)

In this case, the desired optimal flows {fe} are allowed to be rational.
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IP and LP relaxations

With these two motivating examples, we now begin to study one of
the most widely used and successful algorithmic paradigm(s) for
optimization: integer programming (IP) and linear programming (LP).

We will be discussing the LP relaxation of IPs and rounding such LPs
to obtain IP solutions.

We start with some examples and then briefly discuss some LP theory.

We will mainly be treating LP solvers as a black box.
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Complexity status

While there are problems which are directly represented by LPs (e.g.
max flow), I will focus on NP-hard problems which are (in most
cases) naturally represented by IPs.

Indeed solving IPs is an NP-hard problem although there are many
heuristics and special cases that are solvable in practice and
sometimes in theory.

LPs are efficiently solvable both in practice and theoretically.
I There poly-time algorithms for solving them although these algorithms

tend not to be as efficient as simpler combinatorial methods.
I Not known if there is a strongly poly-time algorithm.
I All analyzed implementations of the simplex method can take

exponential time in worst case analysis but “in practice” simplex works
well and with respect to “smoothed analysis”, the method is
polynomial time.
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LPs in standard form (for a minimization problem)

The standard form for a minimization problem

minimize
d∑

j=1

cj · xj

subject to
d∑

j=1

Aij · xj ≥ bi for each i = 1, . . . ,m

xj ≥ 0 for each j = 1, . . . , d

Using boldface to denote vectors, we can write this standard form more
compactly as follows:

minimize c · x
s.t. Ax ≥ b

x ≥ 0
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LPs in standard form (for a maximization problem)

The standard form for a maximization problem

maximize
d∑

j=1

cj · xj

subject to
d∑

j=1

Aij · xj ≤ bi for each i = 1, . . . ,m

xi ≥ 0 for each i = 1, . . . , d

We can write this standard form more compactly as follows:

maximize c · x
s.t. Ax ≤ b

x ≥ 0
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Notes

The previous examples had equalities and not just inequalities but it
is easy to see how an equality can be converted into two inequalities.

Integer programs (IPs) have additional constraints xi ∈ Z.

“Duality” uses standard form.

Minimization problems (in standard form) for which all aij and bi are
non negative are called covering problems.

Maximization problems (in standard form) for which all aij and bi are
non negative are called packing problems.

There is another basic form called slack form where slack variables are
used to turn all inequalities into equalities and that is a convenient
form for the Simplex method that is often used to solve LPs.
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Overview of the IP formulation for vertex cover and
its LP relaxation

We discuss weighted vertex cover as a {0, 1} IP.

We will discuss its LP relaxation and “näıve” and why this provides a
2-approximation.

What is the integrality gap of this IP/LP relaxation?

Adding some additional inequalities (say corresponding to odd cycles)
does not help.

In general there will be many IP formulations for a given problem. An
integrality gap pertains to one (or a class of) IP/LP relaxations.
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An IP for weighted vertex cover

IP formula for weighted vertex cover

minimize
n∑

j=1

wj · xj

s.t. xi + xj ≥ 1 for each edge (i , j) ∈ E

xi ∈ {0, 1} for each i = 1, . . . , n

The intended meaning is that xi = 1 iff vertex vi is in the cover.

The LP relaxation is to relax the integrality condition xi ∈ {0, 1} to
xi ≥ 0.

In this problem it follows that an optimal LP solution also satisfies
xi ≤ 1.
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Rounding an LP optimal solution

Suppose x∗ is an LP optimum.

We can apply a “näıve” rounding (naive in the sense that the
rounding ignores the input) to the fractional solution by setting

x ′i = 1 iff x∗i ≥ 1/2

Claim: x ′ is an integral solution to the IP and hence
V ′ = {vi | x ′i = 1} is a vertex cover. Why?

Claim

The weight of the cover V ′ is at most twice the weight of an optimal cover.

Proof.

Because the LP is a relaxation, it also allows IP solutions. Thus,
OPTLP ≤ OPTIP .

Then we have w(V ′) ≤ 2 · OPTLP ≤ 2 · OPTIP .
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