
CSC 373: Algorithm Design and Analysis
Lecture 18

Allan Borodin

March 1, 2013

Material for NP completeness of SAT is from MIT Open Courseware spring 2011

course at http://tinyurl.com/bjde5o5 .

1 / 18

http://tinyurl.com/bjde5o5

Announcements and Outline

Announcements

Term test 2 on Monday in tutorial rooms.

Please hand back your test if you have not already done do. I need to
record the grade. I am still missing some tests to be recorded.

You must keep all graded work until the term is over just in case
there is some inconsistency in the grades recorded and what you have.

Please refer to the web page for my policy on regrading.

Today’s outline

Answer questions about assignment

Brief introductio to Turing machines.

The NP completeness of SAT

2 / 18

Brief introduction to Turing machines

We are using the classical one tape TM. This is the simplest variant
to formalize which will enable the proof for the NP completeness of
SAT. In the proof, we are assuming (without loss of generality) that
all time bounds T (n) are computable in polynomial time.

Claim: Any reasonable (classical) computing model algorithm running
in time T (n), can be simulated by a TM in time T (n)k for some k .
Hence we can use the TM model in the definition of P and NP.

Since we are only considering decision problems we will view TMs
that are defined for decision problems and hence do not need an
output other than a reject and accept state.

Following the notation in the MIT lecture notes, formally, a specific
TM is a tuple M = (Q,Σ, Γ, δ, q0, qacc , qrej)

We briefly explain (using the board) the model and notation. Note
that Q,Σ, Γ are all finite sets.

δ : Q × Γ→ 2Q×Γ×{L,R} is the (finite) transition function

3 / 18

Satisfiability is NP-Complete
• SAT = { < φ > | φ is a satisfiable Boolean formula }
• Theorem: SAT is NP-complete.
• Lemma 1: SAT ∈ NP.
• Lemma 2: SAT is NP-hard.
• Proof of Lemma 1:

– Recall: L ∈ NP if and only if (∃ V, poly-time verifier) (∃ p, poly)
x ∈ L iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts]

– So, to show SAT ∈ NP, it’s enough to show (∃ V) (∃ p)
φ ∈ SAT iff (∃ c, |c| ≤ p(|x|)) [V(φ, c) accepts]

– We know: φ ∈ SAT iff there is an assignment to the variables such
that φ with this assignment evaluates to 1.

– So, let certificate c be the assignment.
– Let verifier V take a formula φ and an assignment c and accept

exactly if φ with c evaluates to true.
– Evaluate φ bottom-up, takes poly time.

4 / 18

Satisfiability is NP-Complete
• Lemma 2: SAT is NP-hard.
• Proof of Lemma 2:

– Need to show that, for any A ∈ NP, A ≤p SAT.
– Fix A ∈ NP.
– Construct a poly-time f such that

w ∈ A if and only if f(w) ∈ SAT.

– By definition, since A ∈ NP, there is a nondeterministic
TM M that decides A in polynomial time.

– Fix polynomial p such that M on input w always halts, on
all branches, in time ≤ p(|w|); assume p(|w|) ≥ |w|.

– w ∈ A if and only if there is an accepting computation
history (CH) of M on w.

A formula, write it as φw.

5 / 18

Satisfiability is NP-Complete
• Lemma 2: SAT is NP-hard.
• Proof, cont’d:

– Need w ∈ A if and only if f(w) (= φw) ∈ SAT.
– w ∈ A if and only if there is an accepting CH of M on w.
– So we must construct formula φw to be satisfiable iff there

is an accepting CH of M on w.
– Recall definitions of computation history and accepting

computation history from Post Correspondence Problem:
C0 # C1 # C2 …

• Configurations include tape contents, state, head position.
– We construct φw to describe an accepting CH.
– Let M = (Q, Σ, Γ, δ, q0, qacc, qrej) as usual.
– Instead of lining up configs in a row as before, arrange in

(p(|w|) + 1) row × (p(|w|) + 3) column matrix:

6 / 18

Proof that SAT is NP-hard
• φw will be satisfiable iff there is an accepting CH of M on w.
• Let M = (Q, Σ, Γ, δ, q0, qacc, qrej).
• Arrange configs in (p(|w|) + 1) × (p(|w|) + 3) matrix:

q0 w1 w2 w3 … wn -- -- … --
…
…

…
• Successive configs, ending with accepting config.
• Assume WLOG that each computation takes exactly p(|w|)

steps, so we use p(|w|) + 1 rows.
• p(|w|) + 3 columns: p(|w|) for the interesting portion of the

tape, one for head and state, two for endmarkers.

7 / 18

Proof that SAT is NP-hard
• φw is satisfiable iff there is an accepting CH of M on w.
• Entries in the matrix are represented by Boolean variables:

– Define C = Q ∪ Γ ∪ { # }, alphabet of possible matrix entries.
– Variable xi,j,c represents “the entry in position (i, j) is c”.

• Define φw as a formula over these xi,j,c variables, satisfiable
if and only if there is an accepting computation history for w
(in matrix form).

• Moreover, an assignment of values to the xi,j,c variables that
satisfies φw will correspond to an encoding of an accepting
computation.

• Specifically, φw = φcell ∧ φstart ∧ φaccept ∧ φmove , where:
– φcell : There is exactly one value in each matrix location.
– φstart : The first row represents the starting configuration.
– φaccept : The last row is an accepting configuration.
– φmove : Successive rows represent allowable moves of M.

8 / 18

φcell

• For each position (i,j), write the conjunction of two formulas:

∨c ∈ C xi,j,c : Some value appears in position (i,j).

∧c, d ∈ C, c ≠ d (¬xi,j,c ∨ ¬xi,j,d): Position (i,j) doesn’t contain
two values.

• φcell: Conjoin formulas for all positions (i,j).

• Easy to construct the entire formula φcell given w input.
• Construct it in polynomial time.
• Sanity check: Length of formula is polynomial in |w|:

– O((p(|w|)2) subformulas, one for each (i,j).
– Length of each subformula depends on C, O(|C|2).

9 / 18

φstart

• The right symbols appear in the first row:
q0 w1 w2 w3 … wn -- -- … --

φstart: x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ …
∧ x1,n+2,wn ∧ x1,n+3,-- ∧ …
∧ x1,p(n)+2,-- ∧ x1,p(n)+3,#

10 / 18

φaccept

• For each j, 2 ≤ j≤ p(|w|) + 2, write the formula:

xp(|w|)+1,j,qacc

• qacc appears in position j of the last row.
• φaccept: Take disjunction (or) of all formulas for all j.
• That is, qacc appears in some position of the last

row.

11 / 18

φmove

• As for PCP, correct moves depend on
correct changes to local portions of
configurations.

• It’s enough to consider 2 × 3 rectangles:
• If every 2 × 3 rectangle is “good”, i.e.,

consistent with the transitions, then the
entire matrix represents an accepting CH.

• For each position (i,j), 1 ≤ i ≤ p(|w|), 1 ≤ j ≤
p(|w|)+1, write a formula saying that the
rectangle with upper left at (i,j) is “good”.

• Then conjoin all of these, O(p(|w|)2) clauses.
• Good tiles for (i,j), for a, b, c in Γ:

a

a b c

cb

#

a b

ba

a

a b #

#b

12 / 18

φmove

• Other good tiles are defined in terms of the
nondeterministic transition function δ.

• E.g., if δ(q1, a) includes tuple (q2, b, L), then
the following are good:
– Represents the move directly; for any c:
– Head moves left out of the rectangle; for any c, d:
– Head is just to the left of the rectangle; for any c, d:
– Head at right; for any c, d, e:
– And more, for #, etc.

• Analogously if δ(q1, a) includes (q2, b, R).
• Since M is nondeterministic, δ(q1, a) may

contain several moves, so include all the
tiles.

c

q2 c b

aq1

q1

d b c

ca

a

b c d

dc

d

d q2 c

q1c

e

e d q2

cd

13 / 18

• The good tiles give partial constraints on the computation.
• When taken together, they give enough constraints so that

only a correct CH can satisfy them all.
• The part (conjunct) of φmove for (i,j) should say that the

rectangle with upper left at (i,j) is good:
• It is simply the disjunction (or), over all allowable tiles, of

the subformula:

xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,b1 ∧ xi+1,j+1,b2 ∧ xi+1,j+2,b3

• Thus, φmove is the conjunction over all (i,j), of the
disjunction over all good tiles, of the formula just above.

φmove

a1

b1 b2 b3

a3a2

14 / 18

• φmove is the conjunction over all (i,j), of the
disjunction over all good tiles, of the given six-
term conjunctive formula.

• Q: How big is the formula φmove?
• O(p(|w|)2) clauses, one for each (i,j) pair.
• Each clause is only constant length, O(1).

– Because machine M yields only a constant number of
good tiles.

– And there are only 6 terms for each tile.
• Thus, length of φmove is polynomial in |w|.
• φw = φcell ∧ φstart ∧ φaccept ∧ φmove , length also poly in |w|.

φmove

15 / 18

• φw = φcell ∧ φstart ∧ φaccept ∧ φmove , length poly in |w|.
• More importantly, can produce φw from w in time that is

polynomial in |w|.
• w ∈ A if and only if M has an accepting CH for w if and

only if φw is satisfiable.
• Thus, A ≤p SAT.
• Since A was any language in NP, this proves that SAT is

NP-hard.
• Since SAT is in NP and is NP-hard, SAT is NP-complete.

φmove

16 / 18

Clay Math Institute Millenium Problems:
$1,000,000 each

1 Birch and Swinnerton-Dyer Conjecture

2 Hodge Conjecture

3 Navier-Stokes Equations

4 P = NP?

5 Poincaré Conjecture (Solved)1

6 Riemann Hypothesis

7 Yang-Mills Theory

1Solved by Grigori Perelman 2003: Prize unclaimed
17 / 18

How important is the P vs NP question

Lance Fortnow has an article on P and NP in the September 2009
Communications of the ACM, in which he says

“The P versus NP problem has gone from an interesting problem
related to logic to perhaps the most fundamental and important
mathematical question of our time, whose importance only grows
as computers become more powerful and widespread.”

Claim: It is worth well over the $1,000,000

18 / 18

