
CSC 373: Algorithm Design and Analysis
Lecture 17

Allan Borodin

March 4, 2013

Some materials are from Keven Wayne’s slides and MIT Open Courseware spring

2011 course at http://tinyurl.com/bjde5o5 .
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Announcements and Outline

Announcements

Lecture this Friday.

Assignment 2 is due this Friday, March 1.

Term test 2 on Monday, March 4.

You must keep all graded work until the term is over just in case
there is some inconsistency in the grades recorded and what you have.

Today’s outline

Review 3SAT ≤p SubsetSum transformation and consequences.

3SAT ≤p 3-COLOR

Cook’s proof that SAT is NP complete.

Note: I am going to present the Turing machine model on the board
and may show a simulation from the web. One such site is
http://morphett.info/turing/turing.html
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3SAT reduces to Subset Sum

Claim

3SAT ≤p Subset Sum

Given an instance F of 3SAT, we construct an instance of Subset
Sum that has solution iff F is satisfiable.
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Some consequences of SubsetSum completeness

Recall hint for question 4b of assignment.

SubsetSum ≤p Knapsack where

Knapsack ={
(〈s1, v1〉, . . . , 〈sn, vn〉;S ,V ) | ∃S :

∑
i∈S si ≤ S ,

∑
i∈S vi ≥ V

}
SubsetSum ≤p Half-SubsetSum where

Half-SubsetSum = {a1, . . . , an | ∃S ,
∑

i∈S ai = 1
2

∑n
i=1 ai}.

The NP completeness of Half-SubsetSum implies the completeness of
a decision problem version of the makespan problem.
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Reviewing how to show some L is NP complete.

We must show L ∈ NP. To do so, we provide a polynomial time
verification predicate R(x , y) and polynomial length certificate y for
every x ∈ L; that is,

L = {x | ∃y ,R(x , y) and |y | ≤ q(|x |)}.

We must show that L is NP hard (say with respect to polynomial
time transformations); that is, for some known NP complete L′, there
is a polynomial time transducer function h such that x ∈ L′ iff
h(x) ∈ L. This then establishes that L′ ≤p L.

Warning: The reduction/transformation L′ ≤p L must be in the
correct direction and h must be defined for every input x ; that is, one
must also show that if x /∈ L′ then h(x) /∈ L as well as showing that if
x ∈ L′ then h(x) ∈ L.
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Some transformations are easy, some not

Tranformations are (as we have been arguing) algorithms computing a
function and hence like any algorithmic problem, sometimes there are
easy solutions and sometimes not.

In showing NP-completeness it certainly helps to choose the right
known NP-complete problem to use for the transformation.

In the Karp tree, there are some transformations that are particularly
easy such as :

I IndependentSet ≤p VertexCover
I VertexCover ≤p SetCover

A transforrmation of moderate difficulty is 3SAT ≤p 3-COLOR

I am using Kevin Wayne’s slides to illustrate the transformation. See
slides for “Poly-time reductions” in
http://www.cs.princeton.edu/courses/archive/spring05/cos423/lectures.php

6 / 12

http://www.cs.princeton.edu/courses/archive/spring05/cos423/lectures.php


3CNF ≤p 3-COLOR: Outline of Transformation

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.

T

B

F

! 

x1

! 

x
1

! 

x2

! 

x
2

! 

xn

! 

x
n

! 

x3

! 

x
3

true false

base

31

3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

T F
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i
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1
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3

6-node gadget
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32

3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

  

! 

C
i

= x
1
V x

2
V x

3

T F

B

! 

x1

! 

x
2

! 

x3

not 3-colorable if all are red

true false

contradiction

If φ is a 3CNF formula in n variables and m clauses, then h(φ) = Gφ

will have 2n + 6m + 3 nodes and 3n + 13m + 3 edges.
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3CNF ≤p 3-COLOR: Consistent literals
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3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
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Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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not 3-colorable if all are red

true false

contradiction
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3CNF ≤p 3-COLOR: The clause gadget

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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Gφ is 3-colourable ⇒ φ satisfiable

29

3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf.  Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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3-Colorability

Claim.  Graph is 3-colorable iff " is satisfiable.

Pf.  #  Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.
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φ satisfiable ⇒ Gφ is 3-colourable

33

3-Colorability

Claim.  Graph is 3-colorable iff ! is satisfiable.

Pf.  "   Suppose 3-SAT formula ! is satisfiable.
! Color all true literals T.
! Color node below green node F, and node below that B.
! Color remaining middle row nodes B.
! Color remaining bottom nodes T or F as forced.  !
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Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

YES instance.

35

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

NO instance.

36

Def.  A graph is planar if it can be embedded in the plane in such a way
that no two edges cross.
Applications:  VLSI circuit design, computer graphics.

Kuratowski's Theorem.  An undirected graph G is non-planar iff it
contains a subgraph homeomorphic to K5 or K3,3.

Planarity

Planar K5:  non-planar K3,3:  non-planar

homeomorphic to K3,3
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Brief introduction to Turing machines

We are using the classical one tape TM. This is the simplest variant
to formalize which will enable the proof for the NP completeness of
SAT. In the proof, we are assuming (without loss of generality) that
all time bounds T (n) are computable in polynomial time.

Claim Any reasonable (classical) computing model algorithm running
in time T (n), can be simulated by a TM in time T (n)k for some k .
Hence we can use the TM model in the definition of P and NP.

Since we are only considering decision problems we will view TMs
that are defined for decision problems and hence do not need an
output other than a reject and accept state.

Following the notation in the MIT lecture notes, formally, a specific
TM is a tuple M = (Q,Σ, Γ, δ, q0, qacc , qrej)

We briefly explain (using the board) the model and notation. Note
that Q,Σ, Γ are all finite sets.
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