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Some materials are from Stephen Cook’s IIT talk and Keven Wayne’s slides.
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Announcements and Outline

Announcements

No lecture this Friday. There will be additional questions for the next
assignment which is due March 1.

Please hand back your test if you have not already done do. I need to
record the grade.

You must keep all graded work until the term is over just in case
there is some inconsistency in the grades recorded and what you have.

Please refer to the web page for my policy on regrading.

Enjoy reading week.

Today’s outline

We continue complexity theory and NP-completeness

More on polynomial time reductions

Some NP-complete problems
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NP-Complete Problems

These are the hardest NP problems.

A problem A is p-reducible to a problem B if an “oracle” (i.e. a
subroutine) for B can be used to efficiently solve A.

If A is p-reducible to B, then any efficient procedure for solving B can
be turned into an efficient procedure for A.

If A is p-reducible to B and B is in P, then A is in P.

Definition

A problem B is NP-complete if B is in NP and every problem A in NP is
p-reducible to B.

Theorem

If A is NP-complete and A is in P, then P = NP.

To show P = NP you just need to find a fast (polynomial-time) algorithm
for any one NP-complete problem!!!
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Graph 3-Colorability

A graph is a collection of nodes, with certain pairs of nodes
connected by an edge.

Problem

Given a graph, determine whether each node can be coloured red, blue, or
green, so that the endpoints of each edge have different colours.
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Some more remarks on graph coloring

The natural graph coloring optimization problem is to color a graph
with the fewest number of colors.

We can phrase it as a search or decision problem by saying that the
input is a pair (G , k) and then

1 The search problem is to find a k-coloring of the graph G if one exists.
2 The decision problem is to determine whether or not G has a k

coloring.
3 Clearly, solving the optimization problem solves the search problem

which in turn solves the decision problem.
4 Conversely, if we can efficiently solve the decision problem then we can

efficiently solve the search and optimization problems.

Formally it is the graph coloring decision problem which is
NP-complete. More precisely, the decision problem for any fixed
k ≥ 3 is NP-complete. However, 2-Colorability is in P.

But we will often abuse terminology and speak of the search problem
or the optimization problem as being NP-complete.
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Reducing Graph 3-Colourability to 3SAT

We are given a graph G with nodes, say V = {v1, v2, . . . , vn}

We are given a list of edges, say (v3, v5), (v2, v6), (v3, v6), . . .

We need to find a 3CNF formula F which is satisfiable if and only if
G can be colored with 3 colors (say red, blue, green).

We use Boolean VARIABLES
r1, r2, ..., rn (ri means node i is colored red)
b1, b2, ..., bn (bi means node i is colored blue)
g1, g2, ..., gn (gi means node i is colored green)
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Here are the CLAUSES for the formula F :

I We need one clause for each node:
(r1 ∨ b1 ∨ g1) (node 1 gets at least one color)
(r2 ∨ b2 ∨ g2) (node 2 gets at least one color)
. . .
(rn ∨ bn ∨ gn) (node n gets at least one color)

I We need 3 clauses for each edge: For the edge (v3, v5) we need
(r3 ∨ r5) (v3 and v5 not both red)
(b3 ∨ b5) (v3 and v5 not both blue)
(g3 ∨ g5) (v3 and v5 not both green)

The size of the formula F is comparable to the size of the graph G .

Check: G is 3-colorable if and only if F is satisfiable.
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On the nature of this polynomial time reduction

If we consider the previous reduction of 3-coloring to 3-SAT, it can be
seen as a very simple type of reduction.

Namely, given an input w to the 3-coloring problem, it is transformed
(in polynomial time) to say h(w) such that

w ∈ {G |G can be 3-colored} iff
h(w) ∈ {F |F is a satisfiable 3CNF formula}.

This was the same kind of polynomial time reduction that showed
that bipartite matching is reducible to maximum flows.

Polynomial time transformations

I We say that a language L1 is polynomial time transformable to L2 if there
exists a polynomial time function h such that

w ∈ L1 iff h(w) ∈ L2.

I The function h is called a polynomial time transformation.
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Polynomial time reductions and transformations

In practice, when we are reducing one NP problem to another NP
problem, it will be a polynomial time transformation.

We will use the same notation ≤p to denote a polynomial time
reduction and polynomial time transformation.

As we have observed before if L1 ≤p L2 and L2 ∈ P, then L1 ∈ P.

The contrapositive says that if L1 ≤p L2 and L1 /∈ P, then L2 /∈ P.

≤p is transitive

I An important fact that we will use to prove NP completeness of problems is
that polynomial time reductions are transitive.

I That is L1 ≤p L2 and L2 ≤p L3 implies L1 ≤p L3.

The proof for transformations is easy to see. For say that L1 ≤p L2
via g and L2 ≤p L3 via h, then L1 ≤p L3 via h ◦ g ;
that is, w ∈ L1 iff h(g(w) ∈ L3.
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Polynomial reductions/transformations continued

One fact that holds for polynomial time transformation but is believed
not to hold for polynomial time reductions is the following:

NP closed under polynomial time transformation

If L1 ≤p L2 and L2 ∈ NP then L1 ∈ NP.

The closure of NP under polynomial time transformations is also easy
to see. Namely,

Suppose

I L2 = {w | ∃y , |y | ≤ q(|w |) and R(w , y)} for some polynomial time relation
R and polynomial q, and

I L1 ≤p L2 via h.

Then

L1 = {x | ∃y ′, |y ′| ≤ q(|h(x)| and R ′(x , y ′)} where R ′(x , y ′) = R(h(x), y ′)

10 / 21



Polynomial reductions/transformations continued

On the other hand we do not believe that NP is closed under general
polynomial time reductions.

Specifically, for general polynomial time transformations we have
L̄ ≤p L. Here L̄ = {w |w /∈ L} is the language complement of L.

We do not believe that NP is closed under language complementation.

For example, how would you provide a short verification that a
propositional formula F is not satisfiable? Or how would you show
that a graph G cannot be 3-coloured?

While we will use polynomial time transformations between decision
problems/languages we need to use the general polynomial reductions
to say reduce a search or optimization problem to a decision problem.
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So how do we show that a problem is NP complete?

Showing that a language (i.e. decision problem) L is NP complete
involves establishing two facts:

1 L is in NP

2 Showing that L is NP-hard; that is showing

L′ ≤p L for every L′ ∈ NP

Usually establishing 1 is relatively easy and is done directly in terms
of the definition of L ∈ NP.

I That is, one shows how to verify membership in L by exhibiting an
appropriate certificate. (It could also be established by a polynomial
time transformation to a known L ∈ NP.)

Establishing 2 , i.e. NP-hardness of L, is usually done by reducing
some known NP complete problem L′ to L.
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But how do we show that there are any NP
complete problems?

How do we get started?

Once we have established that there exists at least one NP complete
problem then we can use polynomial time reductions and transitivity
to establish that many other NP problems are NP hard.

Following Cook’s original result, we will show that SAT (and even
3SAT ) is NP complete “from first principles”.

It is easy to see that SAT is in NP.

We will (later) show that SAT is NP hard by showing how to encode
an arbitrary polynomial time (Turing) computation by a CNF formula.
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A tree of reductions/transformations

45

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES.  Given a set of n jobs with processing time
ti, release time ri, and deadline di, is it possible to schedule all jobs on
a single machine such that job i is processed with a contiguous slot of
ti time units in the interval [ri, di ] ?

Claim.  SUBSET-SUM ! P SCHEDULE-RELEASE-TIMES.
Pf.  Given an instance of SUBSET-SUM w1, …, wn, and target W,

! Create n jobs with processing time ti = wi, release time ri = 0, and no
deadline (di =  1 + "j wj).

! Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0

Algorithm Design by Éva Tardos and Jon Kleinberg   •    Copyright © 2005 Addison Wesley   •    Slides by Kevin Wayne

8.9  A Partial Taxonomy of Hard Problems
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Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction
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A little history of NP-completenes

In his original 1971 seminal paper, Cook was interested in theorem
proving. Stephen Cook won the Turing award in 1982

Cook used the general notion of polynomial time reducibility which is
called polynomial time Turing reducibility and sometimes called Cook
reducibility.

Cook established the NP completeness of 3SAT as well as a problem
that includes CLIQUE = {(G , k)|G has a k clique }.
Independently, in the (former) Soviet Union, Leonid Levin proved an
analogous result for SAT (and other problems) as a search problem.

Following Cook’s paper, Karp exhibited over 20 prominent problems
that were also NP-complete.

Karp showed that polynomial time transformations (sometimes called
polynomial many to one reductions or Karp reductions) were sufficient
to establish the NP completness of these problems.
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Independent Set is NP complete

The independent set problem

Given a graph G = (V ,E ) and an integer k.

Is there a subset of vertices S ⊆ V such that |S | ≥ k, and for each
edge at most one of its endpoints is in S?

9

Independent Set

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there
a subset of vertices S ! V such that |S| " k, and for each edge at
most one of its endpoints is in S?

Ex.  Is there an independent set of size " 6?  Yes.
Ex.  Is there an independent set of size " 7?  No.

independent set

10

Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ! V such that |S| # k, and for each edge, at least
one of its endpoints is in S?

Ex.  Is there a vertex cover of size # 4?  Yes.
Ex.  Is there a vertex cover of size # 3?  No.

vertex cover

11

Vertex Cover and Independent Set

Claim.  VERTEX-COVER $P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V % S is a vertex cover.

vertex cover

independent set
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Vertex Cover and Independent Set

Claim.  VERTEX-COVER $P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V % S is a vertex cover.

&

! Let S be any independent set.
! Consider an arbitrary edge (u, v).
! S independent & u ' S or v ' S  &  u ( V % S or v ( V % S.
! Thus, V % S covers (u, v).

)

! Let V % S be any vertex cover.
! Consider two nodes u ( S and v ( S.
! Observe that (u, v) ' E since V % S is a vertex cover.
! Thus, no two nodes in S are joined by an edge  & S independent set. !

Question: Is there an independent set of size 6?

Yes.
Question: Is there an independent set of size 7? No.
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3SAT reduces to Independent Set

Claim

3SAT ≤p Independent Set

Given an instance F of 3SAT, we construct an instance (G , k) of
Independent Set that has an independent set of size k iff F is
satisfiable.
G contains 3 vertices for each clause; i.e. one for each literal.
Connect 3 literals in a clause in a triangle.
Connect literal to each of its negations.

17

Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.

18

Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional
formula ! that is the conjunction of clauses.

SAT:  Given CNF formula !, does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  

! 

Cj = x
1
" x

2
" x

3

  

! 

x
i
  or  x

i

  

! 

" =  C
1
#C

2
# C

3
# C

4

! 

x
1
" x

2
" x

3( ) # x
1
" x

2
" x

3( ) # x
2
" x

3( ) # x
1
" x

2
" x

3( )

each corresponding to different variables
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3 Satisfiability Reduces to Independent Set

Claim.  3-SAT " P INDEPENDENT-SET.
Pf.  Given an instance ! of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff ! is
satisfiable.

Construction.
! G contains 3 vertices for each clause, one for each literal.
! Connect 3 literals in a clause in a triangle.
! Connect literal to each of its negations.

  

! 

x
2

  

! 

"  =  x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

4( )

  

! 

x
3

  

! 

x
1

  

! 

x
1   

! 

x
2   

! 

x
4

  

! 

x
1  

! 

x
2

  

! 

x
3

k = 3

G
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3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = |!| iff ! is satisfiable.

Pf.  #  Let S be independent set of size k.
! S must contain exactly one vertex in each triangle.
! Set these literals to true.
! Truth assignment is consistent and all clauses are satisfied.

Pf  $   Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k.  !

  

! 

x
2   

! 

x
3

  

! 

x
1

  

! 

x
1   

! 

x
2   

! 

x
4

  

! 

x
1  

! 

x
2

  

! 

x
3

k = 3

G

and any other variables in a consistent way

  

! 

"  =  x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

3( ) $ x
1
# x

2
# x

4( )
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Subset Sum

The independent set problem

Given a set of integers S = {w1,w2, . . . ,wn} and an integer W .

Is there a subset S ′ ⊆ S that adds up to exactly W ?

Example

Given S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344} and
W = 3754.

Question: Do we have a solution?

Answer: Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.
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3SAT reduces to Subset Sum

Claim

3SAT ≤p Subset Sum

Given an instance F of 3SAT, we construct an instance of Subset
Sum that has solution iff F is satisfiable.
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Clay Math Institute Millenium Problems:
$1,000,000 each

1 Birch and Swinnerton-Dyer Conjecture

2 Hodge Conjecture

3 Navier-Stokes Equations

4 P = NP?

5 Poincaré Conjecture (Solved)1

6 Riemann Hypothesis

7 Yang-Mills Theory

1Solved by Grigori Perelman 2003: Prize unclaimed
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How important is the P vs NP question

Lance Fortnow has an article on P and NP in the September 2009
Communications of the ACM, in which he says

“The P versus NP problem has gone from an interesting problem
related to logic to perhaps the most fundamental and important
mathematical question of our time, whose importance only grows
as computers become more powerful and widespread.”

Claim: It is worth well over the $1,000,000
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