CSC 373: Algorithm Design and Analysis
Lecture 12

Allan Borodin

February 4, 2013

/16

Lecture 12: Announcements and Outline

Announcements

@ Term test 1 in tutorials. Need to use only two rooms due to sickness
and conference. We will be using BA 2145 and BA 2155.

Today’s outline

@ Diiferent ways to choose an augmenting path so as to ensure
polynomial time termination

@ Immediate applications of the max-flow problem

A consequence of the max-flow min-cut theorem

Corollary

If all capacities are integral (or rational), then any implementation of the
Ford-Fulkerson algorithm will terminate with an optimal integral max flow.

Rational capacities

Why does the claim about integral capacities imply the same for rational
capacities?

The runtime of Ford-Fulkerson

Observation
Each augmenting path has residual capacity at least one. J

@ The max-flow min-cut theorem along with the above observation
ensures that with integral capacities, Ford-Fulkerson must always
terminate and the number of iterations is at most:

C = the sum of edge capacities leaving s.

@ Hence complexity is O(m + nC).

Notes
@ There are bad ways to choose augmenting paths such that with
irrational capacities, the Ford-Fulkerson algorithm will not terminate.
@ However, even with integral capacities, there are bad ways to choose
augmenting paths so that the Ford-Fulkerson algorithm does not
terminate in polynomial time.

4/16

Bad example for naive Ford-Fulkerson

Figure: The numbers denote the capacities of the edges.

@ The max-flow is clearly 2X.

@ A naive Ford-Fulkerson algorithm could alternate between
» pushing a 1 unit flow along the augmenting path s - a— b —t
» pushing a 1 unit flow along the augmenting path s - b —a —t

@ This leads to a runtime of Q(X), which is exponential if say X is
given in binary.

5/16

Some ways to achieve polynomial time

@ Choose an augmenting path having shortest distance: This is the
Edmonds-Karp method and can be found in CLRS. It has running
time O(nm?), where n = |V| and m = |E]|.

@ There is a "“weakly polynomial time” algorithm in KT
» Here the number of arithmetic operations depends on the length of the
integral capacities.
> It follows that always choosing the largest capacity augmenting path is
at least weakly polynomial time.

@ There is a history of max flow algorithms leading to a recent O(mn)
time algorithm (see http://tinyurl.com/bczkdfz).

@ The method | like to present (although not the fastest) is Dinitz's
algorithm which has runtime O(n?m).
» A shortest augmenting-path method based on the concept of a
blocking flow in the leveled graph.
» Has some additional advantages beyond the somewhat better running
time of Edmonds-Karp.

6/16

Dinitz’s algorithm

Definition
@ Define level(u) = length of shortest path from s to u in Gy.
o Let theA“I(iveIed graph” w.r.t the residual graph Gf be the graph
Ls = (V, E) where
V=1{v | v reachable from s}
(u,v) € E if and only if level(v) = level(u) + 1 in Gf.
@ A blocking flow f is a flow such that every s-t path in L has a
saturated edge (i.e. an edge e such that f(e) = c(e)).

Dinitz’s algorithm

1: Initialize f(e) =0 for all e € E.

2: while t is reachable from s in Gf do

3 Construct L¢ from Gf

4: Find a blocking flow fwrt Lfandset f:=f+f
5: end while

6: % There's no more augmenting path

7/16

Proof Sketch

Claims
© The algorithm halts in at most n — 2 iterations.

@ A blocking flow in the leveled graph can be found in time O(mn).

Proof.
Let f be a flow. Let ' be the updated flow after one iteration of Dinitz's
algorithm, and let level’ be the updated level w.r.t. the graph Gy.

© The proof of this claim rests on two facts:

For every node v € Ly, level’(v) > level(v) since every edge in L is
either an edge in Gy or the reverse of an edge in Ly.
Since f’ was a blocking flow, level’(t) > level(t).

8/16

Proof Sketch

Claims
© The algorithm halts in at most iterations.

@ A blocking flow in the leveled graph can be found in time O(mn).

Proof.
Let f be a flow. Let ' be the updated flow after one iteration of Dinitz's
algorithm, and let level’ be the updated level w.r.t. the graph Gy.

© The proof of this claim rests on two facts:

For every node v € Ly, level’(v) > level(v) since every edge in L is
either an edge in Gy or the reverse of an edge in Ly.
Since f’ was a blocking flow, level’(t) > level(t).

@ The leveled graph can be computed in O(m). And using depth first
search we can compute a blocking path in time O(mn).

Ol

8/16

An application of max-flow: the maximum bipartite
matching problem

Persons Jobs
The maximum bipartite matching problem

@ Given a bipartite graph G = (V, E) where

V=ViuVoand VNV, =g> °
ECVixV, ° (

@ Goal: Find a maximum size matching.

optimal algorithm for solving this problem.

@ But we can efficiently reduce this problem
to the max-flow problem.

®
@
@ We do not know any efficient DP or greedy @/ e
©
o

16

The reduction

Figure: Assign every edge of the network flow a capacity 1.

10/16

The reduction preserves solutions

Claims

© Every matching M in G gives rise to an integral flow fp; in the newly
constructed network flow Fg with val(fy) = |M|

@ Conversely every integral flow f in Fg gives rise to a matching My in
G with |M¢| = val(f).

Time complexity for bipartite matching using this reduction.

@ O(mn) using any Ford Fulkerson algorithm since the max flow is at
most n and all capacities are integral.

@ Dinitz's algorithm can be used to obtain a runtime O(m+/n).

11/16

A few more comments on this reduction

@ When we get to our next big topic (NP completeness), we will be
focusing on decision problems and as a decision problem we have
M| > k iff val(fy) > k.

@ The reduction we are using is very efficient (linear time in the
representation of the graph) and it is a special type of polynomial
time reduction which we will call a polynomial time transformation.

Alternating and augmenting paths in graphs

There is a graph theoretic concept of an augmenting path relative to a
matching (in an arbitrary graph).
@ An alternating path 7 relative to a matching M is one whose edges
alternate between edges in M and edges not in M.

@ An augmenting path is an alternating path that starts and ends with
nodes not in M.

@ The reduction provides a 1-1 correspondence between augmenting
paths in the bipartite G w.r.t. M¢ and augmenting paths in Gy, .

12 /16

Can this be extended to maximum weighted
bipartite matching?

@ In the weighted bipartite matching problem we are given an edge
weighted bipartite graph G = (V, E) with V = V4 U V, and say
integral weights w : E — N

@ Goal: compute a matching M so as to maximize »_ .y, w(e).

@ A more or less obvious idea now is to form a flow network with new
distinguished source and terminal nodes s and t.

@ We would then set the capacity of the directed edge (x,y) to be
c(x,y) = w(x,y) for all (x,y) € E.
@ For edges leaving s and entering t we set

c(s,x) = m}?x{w(x,y) (x,y) € E}

cly.t) = max{w(x.y) : (x.y) € E}

Why doesn't this work?

13 /16

Disjoint paths: Another similar application of max
flow

@ A natural problem of interest in fault tolerant networks is to ensure
that there are sufficiently many edge disjoint paths.

@ Given a directed graph G = (V/, E) with a distinguished source node s
and terminal node t.

@ Goal: compute the maximum number of edge disjoint paths from s
to t.

@ Similar to the bipartite matching transformation, we view G as a flow
network F¢ by setting the capacity of all edges equal to 1.

@ Once again, because of integrality and unit capacities, we can argue
that there are k edge disjoint paths in G iff Fg has (integral) flow k.

@ And hence we can deduce Menger's theorem which states that the
maximum number of edge-disjoint s-t paths in a directed graph is
equal to the minimum number of edges in an s-t cut.

® The same theorem holds for undirected graphs.

14 /16

The {0,1} metric labeling problem

@ We now wish to consider one more application of max flow-min cut.
Namely, we will consider the {0,1} metric labeling problem as
discussed in §12.6 and §7.10 of Kleinberg and Tardos.

@ This is in fact a special case of a more general metric labeling
problem defined as follows:

» The input is an edge weighted graph G = (V, E), a set of labels
L={a1,...,a} in a metric space with distance metric d, and
functions w : E — R2%and ¢ : V x L — R20.

» c(u, aj) is the cost of giving label a; to node u.

» Goal: find a labeling A of the nodes A : V — L so as to minimize

22w €U, M) + 2 vyee wlu, v) - d(A(u), A(v))

@ For example, the nodes might represent documents, the labels are
topics and the edges are links between documents weighted by the
importance of the link.

@ When there are 3 or more labels the problem is NP-hard even for the
case of the {0, 1} metric d for which d(a;, a;) =1 for a; # a; (and
d(a, a) = 0 by the definition of a metric).

15/16

The labeling problem with 2 labels

@ When there are only 2 labels, the only metric is the {0, 1} metric.

@ While the labeling problem is NP-hard for 3 or more labels, it is
solvable in polynomial time for 2 labels by reducing the problem to
the min cut problem.

@ There is a also a 2-approximation algorithm for the {0,1} metric and
3 or more labels by another reduction to min cut. (And there are
other non constant appoximation algorithms for arbitrary metrics.)

@ Informally, the idea is that we can construct a flow network such that
the nodes on the side of the sourse node s will correspond to say
nodes labeled a and the node on the side of the terminal node t will
correspond to the nodes labeled b.

@ We will place capacities between the source s and other nodes to
reflect the cost of a mislabel and similarly for the termnal t.

@ The min cut will then correspond to a min cost labeling.

16 /16

