CSC 373: Algorithm Design and Analysis Lecture 12

Allan Borodin

February 4, 2013

Lecture 12: Announcements and Outline

Announcements

- Term test 1 in tutorials. Need to use only two rooms due to sickness and conference. We will be using BA 2145 and BA 2155.

Today's outline

- Diiferent ways to choose an augmenting path so as to ensure polynomial time termination
- Immediate applications of the max-flow problem

A consequence of the max-flow min-cut theorem

Corollary

If all capacities are integral (or rational), then any implementation of the Ford-Fulkerson algorithm will terminate with an optimal integral max flow.

Rational capacities

Why does the claim about integral capacities imply the same for rational capacities?

The runtime of Ford-Fulkerson

Observation

Each augmenting path has residual capacity at least one.

- The max-flow min-cut theorem along with the above observation ensures that with integral capacities, Ford-Fulkerson must always terminate and the number of iterations is at most:

$$
C=\text { the sum of edge capacities leaving } s .
$$

- Hence complexity is $O(m+n C)$.

Notes

- There are bad ways to choose augmenting paths such that with irrational capacities, the Ford-Fulkerson algorithm will not terminate.
- However, even with integral capacities, there are bad ways to choose augmenting paths so that the Ford-Fulkerson algorithm does not terminate in polynomial time.

Bad example for naive Ford-Fulkerson

Figure: The numbers denote the capacities of the edges.

- The max-flow is clearly $2 X$.
- A naive Ford-Fulkerson algorithm could alternate between
- pushing a 1 unit flow along the augmenting path $s \rightarrow a \rightarrow b \rightarrow t$
- pushing a 1 unit flow along the augmenting path $s \rightarrow b \rightarrow a \rightarrow t$
- This leads to a runtime of $\Omega(X)$, which is exponential if say X is given in binary.

Some ways to achieve polynomial time

- Choose an augmenting path having shortest distance: This is the Edmonds-Karp method and can be found in CLRS. It has running time $O\left(n m^{2}\right)$, where $n=|V|$ and $m=|E|$.
- There is a "weakly polynomial time" algorithm in KT
- Here the number of arithmetic operations depends on the length of the integral capacities.
- It follows that always choosing the largest capacity augmenting path is at least weakly polynomial time.
- There is a history of max flow algorithms leading to a recent $O(m n)$ time algorithm (see http://tinyurl.com/bczkdfz).
- The method I like to present (although not the fastest) is Dinitz's algorithm which has runtime $O\left(n^{2} m\right)$.
- A shortest augmenting-path method based on the concept of a blocking flow in the leveled graph.
- Has some additional advantages beyond the somewhat better running time of Edmonds-Karp.

Dinitz's algorithm

Definition

- Define level $(u)=$ length of shortest path from s to u in G_{f}.
- Let the "leveled graph" w.r.t the residual graph G_{f} be the graph $L_{f}=(\hat{V}, \hat{E})$ where $\hat{V}=\{v \mid v$ reachable from $s\}$
$(u, v) \in \hat{E}$ if and only if level $(v)=$ level $(u)+1$ in G_{f}.
- A blocking flow \tilde{f} is a flow such that every s-t path in L_{f} has a saturated edge (i.e. an edge e such that $\tilde{f}(e)=c_{f}(e)$).

Dinitz's algorithm

1: Initialize $f(e)=0$ for all $e \in E$.
2: while t is reachable from s in G_{f} do
3: \quad Construct L_{f} from G_{f}
4: \quad Find a blocking flow \tilde{f} w.r.t. L_{f} and set $f:=f+\tilde{f}$
5: end while
6: \% There's no more augmenting path

Proof Sketch

Claims

(1) The algorithm halts in at most $n-2$ iterations.
(2) A blocking flow in the leveled graph can be found in time $O(m n)$.

Proof.

Let f be a flow. Let f^{\prime} be the updated flow after one iteration of Dinitz's algorithm, and let level' be the updated level w.r.t. the graph $G_{f^{\prime}}$.
(1) The proof of this claim rests on two facts:

For every node $v \in L_{f^{\prime}}$, level ${ }^{\prime}(v) \geq$ level (v) since every edge in $L_{f^{\prime}}$ is either an edge in G_{f} or the reverse of an edge in L_{f}.
Since f^{\prime} was a blocking flow, level ${ }^{\prime}(t)>\operatorname{level}(t)$.

Proof Sketch

Claims

(1) The algorithm halts in at most $n-2$ iterations.
(2) A blocking flow in the leveled graph can be found in time $O(m n)$.

Proof.

Let f be a flow. Let f^{\prime} be the updated flow after one iteration of Dinitz's algorithm, and let level' be the updated level w.r.t. the graph $G_{f^{\prime}}$.
(1) The proof of this claim rests on two facts:

For every node $v \in L_{f^{\prime}}$, level ${ }^{\prime}(v) \geq$ level (v) since every edge in $L_{f^{\prime}}$ is either an edge in G_{f} or the reverse of an edge in L_{f}. Since f^{\prime} was a blocking flow, level ${ }^{\prime}(t)>$ level (t).
(2) The leveled graph can be computed in $O(m)$. And using depth first search we can compute a blocking path in time $O(m n)$.

An application of max-flow: the maximum bipartite matching problem

The maximum bipartite matching problem

- Given a bipartite graph $G=(V, E)$ where

$$
\begin{aligned}
& V=V_{1} \cup V_{2} \text { and } V_{1} \cap V_{2}=\varnothing \\
& E \subseteq V_{1} \times V_{2}
\end{aligned}
$$

- Goal: Find a maximum size matching.
- We do not know any efficient DP or greedy optimal algorithm for solving this problem.
- But we can efficiently reduce this problem to the max-flow problem.

The reduction

Figure: Assign every edge of the network flow a capacity 1.

The reduction preserves solutions

Claims

(1) Every matching M in G gives rise to an integral flow f_{M} in the newly constructed network flow F_{G} with val $\left(f_{M}\right)=|M|$
(2) Conversely every integral flow f in F_{G} gives rise to a matching M_{f} in G with $\left|M_{f}\right|=\operatorname{val}(f)$.

Time complexity for bipartite matching using this reduction.

- $O(m n)$ using any Ford Fulkerson algorithm since the max flow is at most n and all capacities are integral.
- Dinitz's algorithm can be used to obtain a runtime $O(m \sqrt{n})$.

A few more comments on this reduction

- When we get to our next big topic (NP completeness), we will be focusing on decision problems and as a decision problem we have $|M| \geq k$ iff $\operatorname{val}\left(f_{M}\right) \geq k$.
- The reduction we are using is very efficient (linear time in the representation of the graph) and it is a special type of polynomial time reduction which we will call a polynomial time transformation.

Alternating and augmenting paths in graphs

There is a graph theoretic concept of an augmenting path relative to a matching (in an arbitrary graph).

- An alternating path π relative to a matching M is one whose edges alternate between edges in M and edges not in M.
- An augmenting path is an alternating path that starts and ends with nodes not in M.
- The reduction provides a 1-1 correspondence between augmenting paths in the bipartite G w.r.t. M_{f} and augmenting paths in $G_{f_{M}}$.

Can this be extended to maximum weighted bipartite matching?

- In the weighted bipartite matching problem we are given an edge weighted bipartite graph $G=(V, E)$ with $V=V_{1} \cup V_{2}$ and say integral weights $w: E \rightarrow \mathbf{N}$
- Goal: compute a matching M so as to maximize $\sum_{e \in M} w(e)$.
- A more or less obvious idea now is to form a flow network with new distinguished source and terminal nodes s and t.
- We would then set the capacity of the directed edge (x, y) to be $c(x, y)=w(x, y)$ for all $(x, y) \in E$.
- For edges leaving s and entering t we set

$$
\begin{aligned}
& c(s, x)=\max _{y}\{w(x, y):(x, y) \in E\} \\
& c(y, t)=\max _{x}\{w(x, y):(x, y) \in E\}
\end{aligned}
$$

- Why doesn't this work?

Disjoint paths: Another similar application of max flow

- A natural problem of interest in fault tolerant networks is to ensure that there are sufficiently many edge disjoint paths.
- Given a directed graph $G=(V, E)$ with a distinguished source node s and terminal node t.
- Goal: compute the maximum number of edge disjoint paths from s to t.
- Similar to the bipartite matching transformation, we view G as a flow network \mathcal{F}_{G} by setting the capacity of all edges equal to 1 .
- Once again, because of integrality and unit capacities, we can argue that there are k edge disjoint paths in G iff \mathcal{F}_{G} has (integral) flow k.
- And hence we can deduce Menger's theorem which states that the maximum number of edge-disjoint s - t paths in a directed graph is equal to the minimum number of edges in an $s-t$ cut.
- The same theorem holds for undirected graphs.

The $\{0,1\}$ metric labeling problem

- We now wish to consider one more application of max flow-min cut. Namely, we will consider the $\{0,1\}$ metric labeling problem as discussed in $\S 12.6$ and $\S 7.10$ of Kleinberg and Tardos.
- This is in fact a special case of a more general metric labeling problem defined as follows:
- The input is an edge weighted graph $G=(V, E)$, a set of labels $L=\left\{a_{1}, \ldots, a_{r}\right\}$ in a metric space with distance metric d, and functions $w: E \rightarrow \Re \geq 0$ and $c: V \times L \rightarrow \Re^{\geq 0}$.
- $c\left(u, a_{j}\right)$ is the cost of giving label a_{j} to node u.
- Goal: find a labeling λ of the nodes $\lambda: V \rightarrow L$ so as to minimize

$$
\sum_{u} c(u, \lambda(u))+\sum_{(u, v) \in E} w(u, v) \cdot d(\lambda(u), \lambda(v))
$$

- For example, the nodes might represent documents, the labels are topics and the edges are links between documents weighted by the importance of the link.
- When there are 3 or more labels the problem is NP-hard even for the case of the $\{0,1\}$ metric d for which $d\left(a_{i}, a_{j}\right)=1$ for $a_{i} \neq a_{j}$ (and $d(a, a)=0$ by the definition of a metric).

The labeling problem with 2 labels

- When there are only 2 labels, the only metric is the $\{0,1\}$ metric.
- While the labeling problem is NP-hard for 3 or more labels, it is solvable in polynomial time for 2 labels by reducing the problem to the min cut problem.
- There is a also a 2 -approximation algorithm for the $\{0,1\}$ metric and 3 or more labels by another reduction to min cut. (And there are other non constant appoximation algorithms for arbitrary metrics.)
- Informally, the idea is that we can construct a flow network such that the nodes on the side of the sourse node s will correspond to say nodes labeled a and the node on the side of the terminal node t will correspond to the nodes labeled b.
- We will place capacities between the source s and other nodes to reflect the cost of a mislabel and similarly for the termnal t.
- The min cut will then correspond to a min cost labeling.

