CSC 373: Algorithm Design and Analysis
Lecture 12

Allan Borodin

February 4, 2013
Announcements
- Term test 1 in tutorials. Need to use only two rooms due to sickness and conference. We will be using BA 2145 and BA 2155.

Today’s outline
- Different ways to choose an augmenting path so as to ensure polynomial time termination
- Immediate applications of the max-flow problem
A consequence of the max-flow min-cut theorem

Corollary
If all capacities are integral (or rational), then any implementation of the Ford-Fulkerson algorithm will terminate with an optimal integral max flow.

Rational capacities
Why does the claim about integral capacities imply the same for rational capacities?
The runtime of Ford-Fulkerson

Observation

Each augmenting path has residual capacity at least one.

- The max-flow min-cut theorem along with the above observation ensures that with integral capacities, Ford-Fulkerson must always terminate and the number of iterations is at most:
 \[C = \text{the sum of edge capacities leaving } s. \]
- Hence complexity is \(O(m + nC). \)

Notes

- There are bad ways to choose augmenting paths such that with irrational capacities, the Ford-Fulkerson algorithm will not terminate.
- However, even with integral capacities, there are bad ways to choose augmenting paths so that the Ford-Fulkerson algorithm does not terminate in polynomial time.
Bad example for naive Ford-Fulkerson

Figure: The numbers denote the capacities of the edges.

- The max-flow is clearly $2X$.
- A naive Ford-Fulkerson algorithm could alternate between
 - pushing a 1 unit flow along the augmenting path $s \to a \to b \to t$
 - pushing a 1 unit flow along the augmenting path $s \to b \to a \to t$
- This leads to a runtime of $\Omega(X)$, which is exponential if say X is given in binary.
Some ways to achieve polynomial time

- **Choose an augmenting path having shortest distance:** This is the Edmonds-Karp method and can be found in CLRS. It has running time $O(nm^2)$, where $n = |V|$ and $m = |E|$.

- **There is a “weakly polynomial time” algorithm in KT**
 - Here the number of arithmetic operations depends on the length of the integral capacities.
 - It follows that always choosing the largest capacity augmenting path is at least weakly polynomial time.

- There is a history of max flow algorithms leading to a recent $O(mn)$ time algorithm (see http://tinyurl.com/bczkdfz).

- The method I like to present (although not the fastest) is Dinitz’s algorithm which has runtime $O(n^2m)$.
 - A shortest augmenting-path method based on the concept of a blocking flow in the leveled graph.
 - Has some additional advantages beyond the somewhat better running time of Edmonds-Karp.
Dinitz’s algorithm

Definition

- Define \(\text{level}(u) = \) length of shortest path from \(s \) to \(u \) in \(G_f \).
- Let the “leveled graph” w.r.t the residual graph \(G_f \) be the graph \(L_f = (\hat{V}, \hat{E}) \) where
 - \(\hat{V} = \{v \mid v \text{ reachable from } s\} \)
 - \((u, v) \in \hat{E} \text{ if and only if } \text{level}(v) = \text{level}(u) + 1 \text{ in } G_f \).
- A blocking flow \(\tilde{f} \) is a flow such that every \(s-t \) path in \(L_f \) has a saturated edge (i.e. an edge \(e \) such that \(\tilde{f}(e) = c_f(e) \)).

Dinitz’s algorithm

1: Initialize \(f(e) = 0 \) for all \(e \in E \).
2: while \(t \) is reachable from \(s \) in \(G_f \) do
3: \hspace{0.5cm} Construct \(L_f \) from \(G_f \)
4: \hspace{0.5cm} Find a blocking flow \(\tilde{f} \) w.r.t. \(L_f \) and set \(f := f + \tilde{f} \)
5: end while
6: % There’s no more augmenting path
Proof Sketch

Claims

1. The algorithm halts in at most \(n - 2 \) iterations.
2. A blocking flow in the leveled graph can be found in time \(O(mn) \).

Proof.

Let \(f \) be a flow. Let \(f' \) be the updated flow after one iteration of Dinitz's algorithm, and let \(\text{level}' \) be the updated level w.r.t. the graph \(G_{f'} \).

1. The proof of this claim rests on two facts:
 - For every node \(v \in L_{f'} \), \(\text{level}'(v) \geq \text{level}(v) \) since every edge in \(L_{f'} \) is either an edge in \(G_f \) or the reverse of an edge in \(L_f \).
 - Since \(f' \) was a blocking flow, \(\text{level}'(t) > \text{level}(t) \).
Proof Sketch

Claims

1. The algorithm halts in at most \(n - 2\) iterations.
2. A blocking flow in the leveled graph can be found in time \(O(mn)\).

Proof.

Let \(f\) be a flow. Let \(f'\) be the updated flow after one iteration of Dinitz's algorithm, and let \(\text{level}'\) be the updated level w.r.t. the graph \(G_{f'}\).

1. The proof of this claim rests on two facts:
 - For every node \(v \in L_{f'}\), \(\text{level}'(v) \geq \text{level}(v)\) since every edge in \(L_{f'}\) is either an edge in \(G_f\) or the reverse of an edge in \(L_f\).
 - Since \(f'\) was a blocking flow, \(\text{level}'(t) > \text{level}(t)\).

2. The leveled graph can be computed in \(O(m)\). And using depth first search we can compute a blocking path in time \(O(mn)\).
An application of max-flow: the maximum bipartite matching problem

The maximum bipartite matching problem

- Given a bipartite graph \(G = (V, E) \) where
 - \(V = V_1 \cup V_2 \) and \(V_1 \cap V_2 = \emptyset \)
 - \(E \subseteq V_1 \times V_2 \)
- **Goal:** Find a maximum size matching.

- We do not know any efficient DP or greedy optimal algorithm for solving this problem.
- But we can efficiently reduce this problem to the max-flow problem.
The reduction

Figure: Assign every edge of the network flow a capacity 1.
The reduction preserves solutions

Claims

1. Every matching M in G gives rise to an integral flow f_M in the newly constructed network flow F_G with $\text{val}(f_M) = |M|$

2. Conversely every integral flow f in F_G gives rise to a matching M_f in G with $|M_f| = \text{val}(f)$.

Time complexity for bipartite matching using this reduction.

- $O(mn)$ using any Ford Fulkerson algorithm since the max flow is at most n and all capacities are integral.

- Dinitz’s algorithm can be used to obtain a runtime $O(m\sqrt{n})$.
A few more comments on this reduction

- When we get to our next big topic (NP completeness), we will be focusing on decision problems and as a decision problem we have $|M| \geq k$ iff $\text{val}(f_M) \geq k$.
- The reduction we are using is very efficient (linear time in the representation of the graph) and it is a special type of polynomial time reduction which we will call a polynomial time transformation.

Alternating and augmenting paths in graphs

There is a graph theoretic concept of an augmenting path relative to a matching (in an arbitrary graph).

- An alternating path π relative to a matching M is one whose edges alternate between edges in M and edges not in M.
- An augmenting path is an alternating path that starts and ends with nodes not in M.

The reduction provides a 1-1 correspondence between augmenting paths in the bipartite G w.r.t. M_f and augmenting paths in G_{f_M}.
Can this be extended to maximum weighted bipartite matching?

- In the **weighted bipartite matching problem** we are given an edge weighted bipartite graph \(G = (V, E) \) with \(V = V_1 \cup V_2 \) and say integral weights \(w : E \to \mathbb{N} \).
- **Goal:** compute a matching \(M \) so as to maximize \(\sum_{e \in M} w(e) \).
- A more or less obvious idea now is to form a flow network with new distinguished source and terminal nodes \(s \) and \(t \).
- We would then set the capacity of the directed edge \((x, y)\) to be \(c(x, y) = w(x, y) \) for all \((x, y) \in E\).
- For edges leaving \(s \) and entering \(t \) we set

 \[
 c(s, x) = \max_y \{w(x, y) : (x, y) \in E\},
 \]

 \[
 c(y, t) = \max_x \{w(x, y) : (x, y) \in E\}.
 \]

 Why doesn’t this work?
Disjoint paths: Another similar application of max flow

- A natural problem of interest in fault tolerant networks is to ensure that there are sufficiently many edge disjoint paths.
- Given a directed graph $G = (V, E)$ with a distinguished source node s and terminal node t.
- **Goal:** compute the maximum number of edge disjoint paths from s to t.
- Similar to the bipartite matching transformation, we view G as a flow network \mathcal{F}_G by setting the capacity of all edges equal to 1.
- Once again, because of integrality and unit capacities, we can argue that there are k edge disjoint paths in G iff \mathcal{F}_G has (integral) flow k.
- And hence we can deduce Menger’s theorem which states that the maximum number of edge-disjoint s-t paths in a directed graph is equal to the minimum number of edges in an s-t cut.
- The same theorem holds for undirected graphs.
The \(\{0,1\} \) metric labeling problem

- We now wish to consider one more application of max flow-min cut. Namely, we will consider the \(\{0,1\} \) metric labeling problem as discussed in §12.6 and §7.10 of Kleinberg and Tardos.

- This is in fact a special case of a more general metric labeling problem defined as follows:
 - The input is an edge weighted graph \(G = (V, E) \), a set of labels \(L = \{a_1, \ldots, a_r\} \) in a metric space with distance metric \(d \), and functions \(w : E \to \mathbb{R}^\geq 0 \) and \(c : V \times L \to \mathbb{R}^\geq 0 \).
 - \(c(u, a_j) \) is the cost of giving label \(a_j \) to node \(u \).
 - **Goal:** find a labeling \(\lambda \) of the nodes \(\lambda : V \to L \) so as to minimize
 \[
 \sum_u c(u, \lambda(u)) + \sum_{(u, v) \in E} w(u, v) \cdot d(\lambda(u), \lambda(v))
 \]

- For example, the nodes might represent documents, the labels are topics and the edges are links between documents weighted by the importance of the link.

- When there are 3 or more labels the problem is NP-hard even for the case of the \(\{0,1\} \) metric \(d \) for which \(d(a_i, a_j) = 1 \) for \(a_i \neq a_j \) (and \(d(a, a) = 0 \) by the definition of a metric).
The labeling problem with 2 labels

- When there are only 2 labels, the only metric is the \(\{0, 1\} \) metric.
- While the labeling problem is NP-hard for 3 or more labels, it is solvable in polynomial time for 2 labels by reducing the problem to the min cut problem.
- There is also a 2-approximation algorithm for the \(\{0, 1\} \) metric and 3 or more labels by another reduction to min cut. (And there are other non-constant approximation algorithms for arbitrary metrics.)
- Informally, the idea is that we can construct a flow network such that the nodes on the side of the source node \(s \) will correspond to say nodes labeled \(a \) and the node on the side of the terminal node \(t \) will correspond to the nodes labeled \(b \).
- We will place capacities between the source \(s \) and other nodes to reflect the cost of a mislabel and similarly for the terminal \(t \).
- The min cut will then correspond to a min cost labeling.