
CSC 373: Algorithm Design and Analysis
Lecture 12

Allan Borodin

February 4, 2013

1 / 16

Lecture 12: Announcements and Outline

Announcements

Term test 1 in tutorials. Need to use only two rooms due to sickness
and conference. We will be using BA 2145 and BA 2155.

Today’s outline

Diiferent ways to choose an augmenting path so as to ensure
polynomial time termination

Immediate applications of the max-flow problem

2 / 16

A consequence of the max-flow min-cut theorem

Corollary

If all capacities are integral (or rational), then any implementation of the
Ford-Fulkerson algorithm will terminate with an optimal integral max flow.

Rational capacities

Why does the claim about integral capacities imply the same for rational
capacities?

3 / 16

The runtime of Ford-Fulkerson

Observation

Each augmenting path has residual capacity at least one.

The max-flow min-cut theorem along with the above observation
ensures that with integral capacities, Ford-Fulkerson must always
terminate and the number of iterations is at most:

C = the sum of edge capacities leaving s.

Hence complexity is O(m + nC).

Notes

There are bad ways to choose augmenting paths such that with
irrational capacities, the Ford-Fulkerson algorithm will not terminate.

However, even with integral capacities, there are bad ways to choose
augmenting paths so that the Ford-Fulkerson algorithm does not
terminate in polynomial time.

4 / 16

Bad example for naive Ford-Fulkerson

a

s

b

t

X

X

X

X

1

Figure: The numbers denote the capacities of the edges.

The max-flow is clearly 2X .

A naive Ford-Fulkerson algorithm could alternate between
I pushing a 1 unit flow along the augmenting path s → a→ b → t
I pushing a 1 unit flow along the augmenting path s → b → a→ t

This leads to a runtime of Ω(X), which is exponential if say X is
given in binary.

5 / 16

Some ways to achieve polynomial time

Choose an augmenting path having shortest distance: This is the
Edmonds-Karp method and can be found in CLRS. It has running
time O(nm2), where n = |V | and m = |E |.
There is a “weakly polynomial time” algorithm in KT

I Here the number of arithmetic operations depends on the length of the
integral capacities.

I It follows that always choosing the largest capacity augmenting path is
at least weakly polynomial time.

There is a history of max flow algorithms leading to a recent O(mn)
time algorithm (see http://tinyurl.com/bczkdfz).

The method I like to present (although not the fastest) is Dinitz’s
algorithm which has runtime O(n2m).

I A shortest augmenting-path method based on the concept of a
blocking flow in the leveled graph.

I Has some additional advantages beyond the somewhat better running
time of Edmonds-Karp.

6 / 16

Dinitz’s algorithm

Definition

Define level(u) = length of shortest path from s to u in Gf .

Let the “leveled graph” w.r.t the residual graph Gf be the graph
Lf = (V̂ , Ê) where

I V̂ = {v | v reachable from s}
I (u, v) ∈ Ê if and only if level(v) = level(u) + 1 in Gf .

A blocking flow f̃ is a flow such that every s-t path in Lf has a
saturated edge (i.e. an edge e such that f̃ (e) = cf (e)).

Dinitz’s algorithm

1: Initialize f (e) = 0 for all e ∈ E .
2: while t is reachable from s in Gf do
3: Construct Lf from Gf

4: Find a blocking flow f̃ w.r.t. Lf and set f := f + f̃
5: end while
6: % There’s no more augmenting path

7 / 16

Proof Sketch

Claims

1 The algorithm halts in at most n − 2 iterations.

2 A blocking flow in the leveled graph can be found in time O(mn).

Proof.

Let f be a flow. Let f ′ be the updated flow after one iteration of Dinitz’s
algorithm, and let level ′ be the updated level w.r.t. the graph Gf ′ .

1 The proof of this claim rests on two facts:
I For every node v ∈ Lf ′ , level

′(v) ≥ level(v) since every edge in Lf ′ is
either an edge in Gf or the reverse of an edge in Lf .

I Since f ′ was a blocking flow, level ′(t) > level(t).

2 The leveled graph can be computed in O(m). And using depth first
search we can compute a blocking path in time O(mn).

8 / 16

Proof Sketch

Claims

1 The algorithm halts in at most n − 2 iterations.

2 A blocking flow in the leveled graph can be found in time O(mn).

Proof.

Let f be a flow. Let f ′ be the updated flow after one iteration of Dinitz’s
algorithm, and let level ′ be the updated level w.r.t. the graph Gf ′ .

1 The proof of this claim rests on two facts:
I For every node v ∈ Lf ′ , level

′(v) ≥ level(v) since every edge in Lf ′ is
either an edge in Gf or the reverse of an edge in Lf .

I Since f ′ was a blocking flow, level ′(t) > level(t).

2 The leveled graph can be computed in O(m). And using depth first
search we can compute a blocking path in time O(mn).

8 / 16

An application of max-flow: the maximum bipartite
matching problem

The maximum bipartite matching problem

Given a bipartite graph G = (V ,E) where
I V = V1 ∪ V2 and V1 ∩ V2 = ∅
I E ⊆ V1 × V2

Goal: Find a maximum size matching.

We do not know any efficient DP or greedy
optimal algorithm for solving this problem.

But we can efficiently reduce this problem
to the max-flow problem.

a

b

c

d

e

x

y

z

w

Persons Jobs

9 / 16

The reduction

a

b

c

d

e

x

y

z

w

s t

Persons Jobs

Figure: Assign every edge of the network flow a capacity 1.
10 / 16

The reduction preserves solutions

Claims

1 Every matching M in G gives rise to an integral flow fM in the newly
constructed network flow FG with val(fM) = |M|

2 Conversely every integral flow f in FG gives rise to a matching Mf in
G with |Mf | = val(f).

Time complexity for bipartite matching using this reduction.

O(mn) using any Ford Fulkerson algorithm since the max flow is at
most n and all capacities are integral.

Dinitz’s algorithm can be used to obtain a runtime O(m
√
n).

11 / 16

A few more comments on this reduction

When we get to our next big topic (NP completeness), we will be
focusing on decision problems and as a decision problem we have
|M| ≥ k iff val(fM) ≥ k .
The reduction we are using is very efficient (linear time in the
representation of the graph) and it is a special type of polynomial
time reduction which we will call a polynomial time transformation.

Alternating and augmenting paths in graphs

There is a graph theoretic concept of an augmenting path relative to a
matching (in an arbitrary graph).

An alternating path π relative to a matching M is one whose edges
alternate between edges in M and edges not in M.

An augmenting path is an alternating path that starts and ends with
nodes not in M.

The reduction provides a 1-1 correspondence between augmenting
paths in the bipartite G w.r.t. Mf and augmenting paths in GfM .

12 / 16

Can this be extended to maximum weighted
bipartite matching?

In the weighted bipartite matching problem we are given an edge
weighted bipartite graph G = (V ,E) with V = V1 ∪ V2 and say
integral weights w : E → N

Goal: compute a matching M so as to maximize
∑

e∈M w(e).

A more or less obvious idea now is to form a flow network with new
distinguished source and terminal nodes s and t.

We would then set the capacity of the directed edge (x , y) to be
c(x , y) = w(x , y) for all (x , y) ∈ E .

For edges leaving s and entering t we set

c(s, x) = max
y
{w(x , y) : (x , y) ∈ E}

c(y , t) = max
x
{w(x , y) : (x , y) ∈ E}

Why doesn’t this work?

13 / 16

Disjoint paths: Another similar application of max
flow

A natural problem of interest in fault tolerant networks is to ensure
that there are sufficiently many edge disjoint paths.

Given a directed graph G = (V ,E) with a distinguished source node s
and terminal node t.

Goal: compute the maximum number of edge disjoint paths from s
to t.

Similar to the bipartite matching transformation, we view G as a flow
network FG by setting the capacity of all edges equal to 1.

Once again, because of integrality and unit capacities, we can argue
that there are k edge disjoint paths in G iff FG has (integral) flow k.

And hence we can deduce Menger’s theorem which states that the
maximum number of edge-disjoint s-t paths in a directed graph is
equal to the minimum number of edges in an s-t cut.

The same theorem holds for undirected graphs.

14 / 16

The {0,1} metric labeling problem

We now wish to consider one more application of max flow-min cut.
Namely, we will consider the {0,1} metric labeling problem as
discussed in §12.6 and §7.10 of Kleinberg and Tardos.
This is in fact a special case of a more general metric labeling
problem defined as follows:

I The input is an edge weighted graph G = (V ,E), a set of labels
L = {a1, . . . , ar} in a metric space with distance metric d , and
functions w : E → <≥0 and c : V × L→ <≥0.

I c(u, aj) is the cost of giving label aj to node u.
I Goal: find a labeling λ of the nodes λ : V → L so as to minimize∑

u c(u, λ(u)) +
∑

(u,v)∈E w(u, v) · d(λ(u), λ(v))

For example, the nodes might represent documents, the labels are
topics and the edges are links between documents weighted by the
importance of the link.

When there are 3 or more labels the problem is NP-hard even for the
case of the {0, 1} metric d for which d(ai , aj) = 1 for ai 6= aj (and
d(a, a) = 0 by the definition of a metric).

15 / 16

The labeling problem with 2 labels

When there are only 2 labels, the only metric is the {0, 1} metric.

While the labeling problem is NP-hard for 3 or more labels, it is
solvable in polynomial time for 2 labels by reducing the problem to
the min cut problem.

There is a also a 2-approximation algorithm for the {0, 1} metric and
3 or more labels by another reduction to min cut. (And there are
other non constant appoximation algorithms for arbitrary metrics.)

Informally, the idea is that we can construct a flow network such that
the nodes on the side of the sourse node s will correspond to say
nodes labeled a and the node on the side of the terminal node t will
correspond to the nodes labeled b.

We will place capacities between the source s and other nodes to
reflect the cost of a mislabel and similarly for the termnal t.

The min cut will then correspond to a min cost labeling.

16 / 16

