CSC 373: Algorithm Design and Analysis
Lecture 11

Allan Borodin

February 1, 2013

/15

Lecture 11: Announcements and QOutline

Announcements
@ Term test 1 in tutorals

@ | will entertain more assignment questions in Monday lecture
v

Today’s outline
@ Review the max-flow min-cut theorem

@ Ways to choose an augmenting path so as to ensure polynomial time

termination

@ Immediate applications of the max-flow problem

The Ford-Fulkerson scheme

The Ford-Fulkerson scheme
1. /* Initialize */
2. f:=0
3 Gr:=G
4. while there is an augmenting path 7 in Gr do
5 fi=f+1f /* Note this also changes G¢ */
6: end while

v

Note

| call this a “scheme” rather than an algorithm since we haven’t said how
one chooses an augmenting path (as there can be many such paths)

Local search issues for the Ford-Fulkerson scheme

@ Does it matter how we choose an augmenting path for termination
and speed of termination?

@ That is, does it matter how we are choosing the S’ € Nbhd(S)?
» Answer: YES, it matters and there are good ways to choose
augmenting paths so that the algorithm is poly time.
> Note that the local neighbourhood can be say exponential size as long
as we can efficiently search for a “better” solution in the
neighbourhood.

@ Upon termination how good is the flow?

» Answer: The flow is an optimal flow. This will be proved by the
max-flow min-cut theorem.

The max-flow min-cut theorem
@ We will accept some basic facts and look at the proof of the max-flow
min-cut theorem as presented in our old CSC 364 notes.

@ Amongst the consequences of this theorem, we obtain that

If any implementation of the Ford Fulkerson scheme terminates, then the
resulting flow is an optimal flow.

@ A cut (really an s-t cut) in a flow network is a partition (S, T) of the
nodes such that s€ Sand t € T.

@ We define the capacity ¢(S. T) of a cut as

Z c(u,v)

ueS and veT
@ We define the flow (S, T) across a cut as

Z f(u,v)

u€S and veT

Max-flow min-cut continued

Some easy facts

@ One basic fact that intuitively should be clear is that
f(S,T)<c(S,T)

for all cuts (S, T) (by the capacity constraint for each edge).

@ And it should also be intuitively clear that (S, T) = val(f) for any
cut (S, T) (by flow conservation at each node).

@ Hence for any flow f, val(f) < c¢(S, T) for every cut (S, T).

6/15

The max-flow min-cut theorem
The following three statements are equivalent:

@ f is a max-flow
@ There are no augmenting paths w.r.t. flow f (i.e. no s-t path in Gf)

© There exists some cut (S, T) satisfying val(f) = ¢(S, T)
Hence this cut (S, T) must be a min (capacity) cut since
val(f) < ¢(S, T) for all cuts.

Note

The name follows from the fact that the value of a max-flow — the
capacity of a min-cut

The proof outline

©Q = O If there is an augmenting path (w.r.t. f), then f can be
increased and hence not optimal.

15

The proof outline

©Q = O If there is an augmenting path (w.r.t. f), then f can be
increased and hence not optimal.

Q@ = O Consider the set S of all the nodes reachable from s in the
residual graph Gr.

» Note that t cannot be in S and hence (S, T)=(S,V —S) is a cut.

» We also have ¢(S, T) = val(f) since f(u,v) = c(u, v) for all edges
(u,v)withue Sand v e T.

15

The proof outline

©Q = O If there is an augmenting path (w.r.t. f), then f can be
increased and hence not optimal.

@ = O Consider the set S of all the nodes reachable from s in the
residual graph Gr.
» Note that t cannot be in S and hence (S, T)=(S,V —S) is a cut.
» We also have ¢(S, T) = val(f) since f(u,v) = c(u, v) for all edges
(u,v) withue Sand v e T.

© = O Let f’ be an arbitrary flow. We know val(f") < ¢(S, T) for any
cut (S, T) and hence val(f’") < val(f) for the cut constructed in @.

A consequence of the max-flow min-cut theorem

Corollary

If all capacities are integral (or rational), then any implementation of the
Ford-Fulkerson algorithm will terminate with an optimal integral max flow.

Rational capacities

Why does the claim about integral capacities imply the same for rational
capacities?

The runtime of Ford-Fulkerson

Observation
Each augmenting path has residual capacity at least one.

@ The max-flow min-cut theorem along with the above observation
ensures that with integral capacities, Ford-Fulkerson must always
terminate and the number of iterations is at most:

C = the sum of edge capacities leaving s.

Notes
@ There are bad ways to choose augmenting paths such that with
irrational capacities, the Ford-Fulkerson algorithm will not terminate.
@ However, even with integral capacities, there are bad ways to choose
augmenting paths so that the Ford-Fulkerson algorithm does not
terminate in polynomial time.

10/15

Bad example for naive Ford-Fulkerson

Figure: The numbers denote the capacities of the edges.

@ The max-flow is clearly 2X.

@ A naive Ford-Fulkerson algorithm could alternate between
» pushing a 1 unit flow along the augmenting path s - a— b —t
» pushing a 1 unit flow along the augmenting path s - b —a —t

@ This would resul in 2X iterations, which is exponential if say X is
given in binary.

11/15

Some ways to achieve polynomial time

@ Choose an augmenting path having shortest distance: This is the
Edmonds-Karp method and can be found in CLRS. It has running
time O(nm?), where n = |V| and m = |E]|.

@ There is a "“weakly polynomial time" algorithm in KT
» Here the number of arithmetic operations depends on the length of the
integral capacities.
> It follows that always choosing the largest capacity augmenting path is
at least weakly polynomial time.

@ There is a history of max flow algorithms leading to a recent O(mn)
time algorithm (see http://tinyurl.com/bczkdfz).

@ Although not the fastest, next lecture | will present Dinitz's algorithm
which has runtime O(n’m).
» A shortest augmenting-path method based on the concept of a
blocking flow in the leveled graph.
» Has an additional advantage (i.e. an improved bipartite matching
bound) beyond the somewhat better running time of Edmonds-Karp.

12 /15

An application of max-flow: the maximum bipartite
matching problem

Persons Jobs
The maximum bipartite matching problem

@ Given a bipartite graph G = (V, E) where
V=ViuVoand VNV, =g>
E - V1 X V2

@ Goal: Find a maximum size matching.

(=) (&
‘0

@ We do not know any efficient DP or greedy
optimal algorithm for solving this problem.

@ But we can efficiently reduce this problem
to the max-flow problem.

TR 3

13/15

The reduction

Figure: Assign every edge of the network flow a capacity 1.

The reduction preserves solutions

Claims

@ Every matching M in G gives rise to an integral flow fps in the newly
constructed network flow Fg with val(fy) = |M|

@ Conversely every integral flow f in Fg gives rise to a matching My in
G with |M¢| = val(f).

@ Time complexity: O(mn) using any Ford Fulkerson algorithm since
the max flow in at most n and all capacities are integral.

@ Dinitz's algorithm can be used to obtain a runtime O(m+/n).

15/15

