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Lecture 11: Announcements and Outline

Announcements

Term test 1 in tutorals

I will entertain more assignment questions in Monday lecture

Today’s outline

Review the max-flow min-cut theorem

Ways to choose an augmenting path so as to ensure polynomial time
termination

Immediate applications of the max-flow problem
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The Ford-Fulkerson scheme

The Ford-Fulkerson scheme

1: /* Initialize */
2: f := 0
3: Gf := G
4: while there is an augmenting path π in Gf do
5: f := f + fπ /* Note this also changes Gf */
6: end while

Note

I call this a “scheme” rather than an algorithm since we haven’t said how
one chooses an augmenting path (as there can be many such paths)
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Local search issues for the Ford-Fulkerson scheme

Does it matter how we choose an augmenting path for termination
and speed of termination?

That is, does it matter how we are choosing the S ′ ∈ Nbhd(S)?
I Answer: YES, it matters and there are good ways to choose

augmenting paths so that the algorithm is poly time.
I Note that the local neighbourhood can be say exponential size as long

as we can efficiently search for a “better” solution in the
neighbourhood.

Upon termination how good is the flow?
I Answer: The flow is an optimal flow. This will be proved by the

max-flow min-cut theorem.
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The max-flow min-cut theorem

We will accept some basic facts and look at the proof of the max-flow
min-cut theorem as presented in our old CSC 364 notes.

Amongst the consequences of this theorem, we obtain that

If any implementation of the Ford Fulkerson scheme terminates, then the
resulting flow is an optimal flow.

A cut (really an s-t cut) in a flow network is a partition (S ,T ) of the
nodes such that s ∈ S and t ∈ T .

We define the capacity c(S ,T ) of a cut as∑
u∈S and v∈T

c(u, v)

We define the flow f (S ,T ) across a cut as∑
u∈S and v∈T

f (u, v)
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Max-flow min-cut continued

Some easy facts

One basic fact that intuitively should be clear is that

f (S ,T ) ≤ c(S ,T )

for all cuts (S ,T ) (by the capacity constraint for each edge).

And it should also be intuitively clear that f (S ,T ) = val(f ) for any
cut (S ,T ) (by flow conservation at each node).

Hence for any flow f , val(f ) ≤ c(S ,T ) for every cut (S ,T ).
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The max-flow min-cut theorem

The following three statements are equivalent:

1 f is a max-flow

2 There are no augmenting paths w.r.t. flow f (i.e. no s-t path in Gf )

3 There exists some cut (S ,T ) satisfying val(f ) = c(S ,T )
I Hence this cut (S ,T ) must be a min (capacity) cut since

val(f ) ≤ c(S ,T ) for all cuts.

Note

The name follows from the fact that the value of a max-flow = the
capacity of a min-cut
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The proof outline

1 ⇒ 2 If there is an augmenting path (w.r.t. f ), then f can be
increased and hence not optimal.

2 ⇒ 3 Consider the set S of all the nodes reachable from s in the
residual graph Gf .

I Note that t cannot be in S and hence (S ,T ) = (S ,V − S) is a cut.
I We also have c(S ,T ) = val(f ) since f (u, v) = c(u, v) for all edges

(u, v) with u ∈ S and v ∈ T .

3 ⇒ 1 Let f ′ be an arbitrary flow. We know val(f ′) ≤ c(S ,T ) for any
cut (S ,T ) and hence val(f ′) ≤ val(f ) for the cut constructed in 2 .
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A consequence of the max-flow min-cut theorem

Corollary

If all capacities are integral (or rational), then any implementation of the
Ford-Fulkerson algorithm will terminate with an optimal integral max flow.

Rational capacities

Why does the claim about integral capacities imply the same for rational
capacities?
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The runtime of Ford-Fulkerson

Observation

Each augmenting path has residual capacity at least one.

The max-flow min-cut theorem along with the above observation
ensures that with integral capacities, Ford-Fulkerson must always
terminate and the number of iterations is at most:

C = the sum of edge capacities leaving s.

Notes

There are bad ways to choose augmenting paths such that with
irrational capacities, the Ford-Fulkerson algorithm will not terminate.

However, even with integral capacities, there are bad ways to choose
augmenting paths so that the Ford-Fulkerson algorithm does not
terminate in polynomial time.
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Bad example for naive Ford-Fulkerson

a

s
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t
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1

Figure: The numbers denote the capacities of the edges.

The max-flow is clearly 2X .

A naive Ford-Fulkerson algorithm could alternate between
I pushing a 1 unit flow along the augmenting path s → a→ b → t
I pushing a 1 unit flow along the augmenting path s → b → a→ t

This would resul in 2X iterations, which is exponential if say X is
given in binary.
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Some ways to achieve polynomial time

Choose an augmenting path having shortest distance: This is the
Edmonds-Karp method and can be found in CLRS. It has running
time O(nm2), where n = |V | and m = |E |.
There is a “weakly polynomial time” algorithm in KT

I Here the number of arithmetic operations depends on the length of the
integral capacities.

I It follows that always choosing the largest capacity augmenting path is
at least weakly polynomial time.

There is a history of max flow algorithms leading to a recent O(mn)
time algorithm (see http://tinyurl.com/bczkdfz).

Although not the fastest, next lecture I will present Dinitz’s algorithm
which has runtime O(n2m).

I A shortest augmenting-path method based on the concept of a
blocking flow in the leveled graph.

I Has an additional advantage (i.e. an improved bipartite matching
bound) beyond the somewhat better running time of Edmonds-Karp.
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An application of max-flow: the maximum bipartite
matching problem

The maximum bipartite matching problem

Given a bipartite graph G = (V ,E ) where
I V = V1 ∪ V2 and V1 ∩ V2 = ∅
I E ⊆ V1 × V2

Goal: Find a maximum size matching.

We do not know any efficient DP or greedy
optimal algorithm for solving this problem.

But we can efficiently reduce this problem
to the max-flow problem.
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The reduction
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Figure: Assign every edge of the network flow a capacity 1.
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The reduction preserves solutions

Claims

1 Every matching M in G gives rise to an integral flow fM in the newly
constructed network flow FG with val(fM) = |M|

2 Conversely every integral flow f in FG gives rise to a matching Mf in
G with |Mf | = val(f ).

Time complexity: O(mn) using any Ford Fulkerson algorithm since
the max flow in at most n and all capacities are integral.

Dinitz’s algorithm can be used to obtain a runtime O(m
√
n).
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