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Lecture 10: Announcements and Outline

Announcements

Assignments due Friday

Term test on Monday

Today’s outline

We will review:
I Ford Fulkerson and augmenting paths (with figures now fixed).
I Ford Fulkerson as a local search algorithm

Discuss cuts and the max-flow min-cut theorem
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Flow networks

I will be following our old CSC364 lecture notes for the basic
definitions and results concerning the computation of max flows.

We follow the convention of allowing negative flows. While intuitively
this may not seem so natural, it does simplify the development.

The DPV and KT texts use the perhaps more standard convention of
just having non-negative flows.

Definition

A flow network (more suggestive to say a capacity network) is a tuple
F = (G , s, t, c) where

G = (V ,E ) is a “bidirectional graph”

the source s and the terminal t are nodes in V

the capacity c : E → R≥0
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What is a flow?

A flow is a function f : E → R satisfying the following properties:

1 Capacity constraint: for all (u, v) ∈ E ,

f (u, v) ≤ c(u, v)

2 Skew symmetry: for all (u, v) ∈ E ,

f (u, v) = −f (v , u)

3 Flow conservation: for all nodes u (except for s and t),∑
v∈N(u)

f (u, v) = 0

Note

Condition 3 is the “flow in = flow out” constraint if we were using the
convention of only having non-negative flows.
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An example

a c

s

b d

t

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

The notation x/y on an edge (u, v) means

x is the flow, i.e. x = f (u, v)

y is the capacity, i.e. x = c(u, v)
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An example of flow conservation

a c

s

b d

t

a

13/20

8/13

14/14

11/15

17/22

4/4

4/8 7/7−1/10 1/4

For node a: f (a, s) + f (a, b) + f (a, c) = −13 + (−1) + 14 = 0

For node c :

f (c , a) + f (c , b) + f (c, d) + f (c , t) = −14 + 4 + (−7) + 17 = 0
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The max flow problem

The max flow problem

Given a network flow, the goal is to find a valid flow that maximizes the
flow out of the source node s.

As we will see this is also equivalent to maximizing the flow into the
terminal node t. (This should not be surprising as flow conservation
dictates that no flow is being stored in the other nodes.)

We let val(f ) denote the flow out of the source s for a given flow f .

We will study the Ford-Fulkerson augmenting path scheme for
computing an optimal flow.

I am calling it a “scheme” as there are many ways to instantiate this
scheme although I dont view it as a general “paradigm” in the way I
view (say) greedy and DP algorithms.
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So why study Ford-Fulkerson?

Why do we study the Ford-Fulkerson scheme if it is not a very generic
algorithmic approach?

As in DPV text, max flow problem can also be represented as a linear
program (LP) and all LPs can be solved in polynomial time.

I view Ford-Fulkerson and augmenting paths as an important example
of a local search algorithm although unlike most local search
algorithms we obtain an optimal solution.

The topic of max flow (and various generalizations) is important
because of its immediate application and many applications of max
flow type problems to other problems (e.g. max bipartite matching).

I That is many problems can be polynomial time transformed/reduced to
max flow (or one of its generalizations).

I One might refer to all these applications as “flow based methods”.
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A flow f and its residual graph

Given any flow f for a flow network F = (G , s, t, c), we define the
residual graph Gf = (V ,Ef ), where

I V is the set of vertices of the original flow network F
I Ef is the set of all edges e having positive residual capacity

cf (e) = c(e)− f (e) > 0.

Note that c(e)− f (e) ≥ 0 for all edges by the capacity constraint.

Note

With our convention of negative flows, even a zero capacity edge (in G )
can have residual capacity.

The basic concept underlying the Ford-Fulkerson algorithm is an
augmenting path which is an s-t path in Gf .

I Such a path can be used to augment the current flow f to derive a
better flow f ′.
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An example of a residual graph

a c
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b d

t
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17/22
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4/8 7/7−1/10 1/4

The previous network flow
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The residual graph
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The residual capacity of an augmenting path

Given an augmenting path π in Gf , we define its residual capacity
cf (π) to be the

min{c(e)− cf (e) | e ∈ π}

Note: the residual capacity of an augmenting path is itself is greater
than 0 since every edge in the path has positive residual capacity.

Question: How would we compute an augmenting path of maximum
residual capacity?
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Using an augmenting path to improve the flow

We can think of an augmenting path as defining a flow fπ (in the
“residual network”):

fπ(u, v) =


cf (π) if (u, v) ∈ π
−cf (π) if (v , u) ∈ π
0 otherwise

Claim

f ′ = f + fπ is a flow in F and val(f ′) > val(f )
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Deriving a better flow using an augmenting path

a c

s

b d

t
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17/22

4/4

4/8 7/7−1/10 1/4

The original network flow

a c
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An augmenting path π with cf (π) = 4

a c

s

b d

t

17/20

8/13

14/14

11/15

0/8

21/22

4/4

7/73/10 −3/4

The updated flow whose value = 25

a c

s

b d

t

4

11

7 7

3

5

14

8

4

7

1

Updated res. graph with no aug. path
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The Ford-Fulkerson scheme

The Ford-Fulkerson scheme

1: /* Initialize */
2: f := 0
3: Gf := G
4: while there is an augmenting path π in Gf do
5: f := f + fπ /* Note this also changes Gf */
6: end while

Note

I call this a “scheme” rather than an algorithm since we haven’t said how
one chooses an augmenting path (as there can be many such paths)
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Ford Fulkerson as a local search

Local search is one of the most popular approaches for solving search
and optimization problems.

Local search is often considerd to be a “heuristic” since local search
algorithms are often not analyzed but seem to often produce good
results.

For both search (i.e finding any feasible solution) and optimization,
local search algorithms define some local neighborhood of a (partial)
solution S , which we will denote as Nbhd(S)
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The local search meta-algorithm

The local search meta-algorithm

1: Initialize S
2: while there is a “better” solution S ′ ∈ Nbhd(S) do
3: S := S ′

4: end while

Here “better” can mean different things.
I For a search problem, it can mean “closer” to being feasible.
I For an optimization problem it usually means being an improved

solution.

There are many variations of local search and we will study local
search later but for now we just wish to observe the sense in which
Ford-Fulkerson can be seen as a local search algorithm.

I We start with a trivial initial solution.
I We define the local neighbourhood of a flow f to be all flows f defined

by adding the flow of an augmenting path fπ to f .
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Many issues concerning local search algorithms

How do we choose an initial solution?

How do we define the local neighbourhood and how do we choose an
S ′ ∈ Nbhd(S)?

Can we guarantee that a local search algorithm will terminate? And if
so, how fast will the algorithm terminate?

Upon termination how good is the local optimum that results from a
local search optimization?

How can we escape from a local optimum (assuming it is not
optimal)?
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Local search issues for the Ford-Fulkerson scheme

Does it matter how we choose an augmenting path for termination
and speed of termination?

That is, does it matter how we are choosing the S ′ ∈ Nbhd(S)?
I Answer: YES, it matters and there are good ways to choose

augmenting paths so that the algorithm is poly time.
I Note that the Nbhd(S) here can be of exponential size but that is not

a problem as long as we can efficiently search for solutions in the local
neighbourhood.

Upon termination how good is the flow?
I Answer: The flow is an optimal flow. This will be proved by the

max-flow min-cut theorem.
I Note that this is unusual in that for most local search applications a

local optimum is usually not a global optimum.
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The max-flow min-cut theorem

We will accept some basic facts and look at the proof of the max-flow
min-cut theorem as presented in our old CSC 364 notes.

Amongst the consequences of this theorem, we obtain that

If any implementation of the Ford Fulkerson scheme terminates, then the
resulting flow is an optimal flow.

A cut (really an s-t cut) in a flow network is a partition (S ,T ) of the
nodes such that s ∈ S and t ∈ T .

We define the capacity c(S ,T ) of a cut as∑
u∈S and v∈T

c(u, v)

We define the flow f (S ,T ) across a cut as∑
u∈S and v∈T

f (u, v)
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Max-flow min-cut continued

Some easy facts

One basic fact that intuitively should be clear is that

f (S ,T ) ≤ c(S ,T )

for all cuts (S ,T ) (by the capacity constraint for each edge).

And it should also be intuitively clear that f (S ,T ) = val(f ) for any
cut (S ,T ) (by flow conservation at each node).

Hence for any flow f , val(f ) ≤ c(S ,T ) for every cut (S ,T ).
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The max-flow min-cut theorem

The following three statements are equivalent:

1 f is a max-flow

2 There are no augmenting paths w.r.t. flow f (i.e. no s-t path in Gf )

3 There exists some cut (S ,T ) satisfying val(f ) = c(S ,T )
I Hence this cut (S ,T ) must be a min (capacity) cut since

val(f ) ≤ c(S ,T ) for all cuts.

Note

The name follows from the fact that the value of a max-flow = the
capacity of a min-cut
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The proof outline

1 ⇒ 2 If there is an augmenting path (w.r.t. f ), then f can be
increased and hence not optimal.

2 ⇒ 3 Consider the set S of all the nodes reachable from s in the
residual graph Gf .

I Note that t cannot be in S and hence (S ,T ) = (S ,V − S) is a cut.
I We also have c(S ,T ) = val(f ) since f (u, v) = c(u, v) for all edges

(u, v) with u ∈ S and v ∈ T .

3 ⇒ 1 Let f ′ be an arbitrary flow. We know val(f ′) ≤ c(S ,T ) for any
cut (S ,T ) and hence val(f ′) ≤ val(f ) for the cut constructed in 2 .
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