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Lecture 1: Outline

Introduction and motivation for

CSC 373: Design and Analysis of Algorithms

Plus now in CSC373: A brief introduction to complexity theory

Start of greedy algorithms; interval scheduling
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The growing importance of TCS

Its core questions (e.g. P vs NP) have gained prominence in both the
intellectual and popular arenas.

Recent breakthroughs in faster algorithms and scalable parallelizable
data structures, complexity based cryptography, approximate
combinatorial optimization, pseudo-randomness, coding theory,. . .

TCS has expanded its frontiers.
Many fields rely increasingly on the algorithms and abstractions of
TCS, creating new areas of inquiry within theory and new fields at the
boundaries between TCS and disciplines such as:

I computational biology
I algorithmic game theory
I algorithmic aspects of social networks
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Course Organization:

Lectures: “Normally” M,W,F 11

Tutorials: “Normally” M4 (but not today)

Exceptions: When I have to swtich F11 lecture and M4 tutorial

Grading:
I 3 assignments at 5% each (no late assignments)
I 3 term tests at 15% each (similar to assignment)
I one final at 40%

Office hours:
I Scheduled hours TBA
I by appointment
I dropping in is also (usually) welcome

My office: SF 2303B

My email: bor@cs.toronto.edu
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Materials

The required text is Algorithms by dasGupta, Papadimitrou and
Vazirani

Many other excellent texts: Kleinberg and Tardos, Cormen et al

Many existing course notes on the web

My lecture slides are basically only outlines of the lectures and are not
a substitute for a text. In particular, I will generally not include proofs
in the posted slides.
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The dividing line between efficient and NP hardnesss

Many closely related problems are such that:

One problem has an efficient algorithm while a variant becomes (according
to well accepted conjectures) difficult to compute (e.g. requiring

exponential time complexity).

For example (to be explained as we proceed):
I Interval Scheduling vs Job Interval Scheduling
I Minimum Spanning Tree (MST) vs Bounded degree MST
I MST vs Steiner tree
I Shortest paths vs Longest (simple) paths
I 2-Colourability vs 3-Colourability

Our focus is worst case analysis vs “peformance in practice”
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Tentative set of topics (very approximate)

Easy vs Hard Problems (discussed throughout term)

Greedy algorithms (5 Lectures)

Dynamic Programming (5 Lectures)

Network flows; matching (4 Lectures)

NP and NP-completeness; self reduction (7 Lectures)

Linear Programming; IP/LP rounding (5 Lectures)

Local search (3 Lectures)

Randomization (4 Lectures)

Approximation algorithms (discussed throughout term)
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Begin greedy algorithms

Interval Scheduling Problem

Job j starts at sj and finishes at fj .

Two jobs are compatible if they don’t overlap.

Goal: find maximum subset of mutually compatible jobs.
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Interval Scheduling: Greedy Algorithm

Greedy template

Consider jobs in some “natural” order.

Take each job provided it’s compatible with the ones already taken.

1 Earliest start time: Consider jobs in ascending order of sj .
2 Earliest finish time: Consider jobs in ascending order of fj .
3 Shortest interval: Consider jobs in ascending order of fj − sj .
4 Fewest conflicts: For each job j , count the remaining number of

conflicting jobs cj . Schedule in ascending order of cj .
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Interval Scheduling: Greedy Algorithm

Greedy template

Consider jobs in some “natural” order.

Take each job provided it’s compatible with the ones already taken.

5

Interval Scheduling:  Greedy Algorithms

Greedy template.  Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts
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Greedy algorithm.  Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Implementation.  O(n log n).

! Remember job j* that was added last to A.

! Job j is compatible with A if sj ! fj*.

Sort jobs by finish times so that f1 " f2 " ... " fn.

A # $

for j = 1 to n {

   if (job j compatible with A)

      A # A % {j}

}

return A

set of jobs selected 

Interval Scheduling:  Greedy Algorithm
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Interval Scheduling:  Analysis

Theorem.  Greedy algorithm is optimal.

Pf.  (by contradiction)

! Assume greedy is not optimal, and let's see what happens.

! Let i1, i2, ... ik denote set of jobs selected by greedy.

! Let j1, j2, ... jm  denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1
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j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling:  Analysis

Theorem.  Greedy algorithm is optimal.

Pf.  (by contradiction)

! Assume greedy is not optimal, and let's see what happens.

! Let i1, i2, ... ik denote set of jobs selected by greedy.

! Let j1, j2, ... jm  denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1
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A more general (greedy) myopic template

Consider input items in some “reasonable” order.

Consider each input item and make an irrevocable (greedy) decision
regarding that input item.

Terminology and templates

We will follow the more common “greedy algorithms” terminology.

However, as mentioned in text (and following older terminology), it
would be better to use instead the suggestively broader class of
myopic algorithms.

My informal template for greedy algorithms differs somewhat from
that given in the DPV text. I view the “greedy aspect” as it relates to
the (“live for today”) nature of the irrevocable decision rather than
the choice of the next input item to consider.

Neither the above template nor that in DPV is a precise definition.
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Optimality of EFT Greedy algorithm

Earliest Finish Time (EFT) Algorithm

Consider jobs in ascending order of finishing time fj .
Take each job provided it’s compatible with the ones already taken.
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Given the fact that some other reasonable greedy algorithms for the interval scheduling problem
do not yield optimal solutions, how can we be convinced that EFT is optimal?
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Comments on the optimality of EFT

The proof outline shows that

The partial solution S(i) at the end of the ith iteration is promising in that
it can be extended to an optimal solution

(using intervals not yet considered).

This is not the only possible proof of this result. But before giving
another type of proof (a charging argument), you might rightfully ask

“why bother proving this?”
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