
CSC373S Problem Set 2 Winter, 2011

Due: Wed, March 9, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do your
own work (but see below). Similar questions will appear on the first term test. You may
consult with others concerning the general approach for solving problems on assignments,
but you must write up all solutions entirely on your own. Anything else is plagiarism,
and is subject to the University’s Code of Behavior. You will receive 1/5 points for any
(non bonus) question/subquestion for which you say “I do not know how to answer this
question”. You will receive .5/5 points if you just leave the question blank.
Advice: Do NOT spend an excessive amount of time on any question and especially not on
a bonus question. If you wish to spend “free time” thinking about (say) bonus questions
that is fine but you should not sacrifice time needed for other courses.

1. (20 points)

Consider the following variant of the knapsack problem. The input consists of a
knapsack size bound W and n sets Si, each containing 3 items. That is, Si =
{Ii,1, Ii,2, Ii,3} and Ii,j = (vi,j, si,j) where vi,j (respectively, si,j) is the value (resp.
size) of item Ii,j. A feasible solution S is a choice of at most one item from each set
Si so that the sum of item sizes chosen is at most W . Suppose W ≤ n2 and all sizes
si,j are integral. Provide a polynomial time dynamic programming algorithm that
will compute the optimal value of a feasible solution. Provide appropriate semantic
and computational (i.e. recursively defined) arrays and indicate the time complexity
of your algorithm.

2. (25 points)

Consider the following scheduling problem (which can be viewed as a generalization
of the knapsack problem). The input consists of n jobs J(1), . . . , J(n) where J(i) =
[pi, di, vi] where (respectively) pi is the processing time (the deadline, the value)
of job J(i). Jobs that complete their processing by their deadline contribute their
value to the total profit of the schedule and as in interval scheduling, scheduled jobs
cannot intersect. The goal is to schedule jobs so as to maximize the total profit.
(Late jobs have no value and hence need not be scheduled.) Note that the knapsack
problem is the special case when di = W for all i.

(a) (10 points) Show that if a subset S of jobs can be scheduled, then these jobs
can be scheduled so that for all J(i), J(j) ∈ S, if J(i) is scheduled before J(j)
then di ≤ dj.

(b) (15 points)

Suppose V =
∑

i vi ≤ n2 and that all vi are integers. Provide a polynomial
time dynamic programming algorithm that will compute the optimal value
of a feasible solution. Provide appropriate semantic and computational (i.e.
recursively defined) arrays and indicate the time complexity of your algorithm.

1

3. (20 points)

Consider the following triangulation problem. We are given a set of n points in the
plane which are the vertices (in clockwise order) of a convex polygon P in the plane.
We are also given a set S of m points in the interior of P . The cost of a triangle
∆ is defined as the number of points in S that are located within ∆, including
the boundary of ∆. We will let S∆ denote the intersection of S and a triangle ∆.
Assume that the number of points in the intersection S∆ can be determined in time
O(|S∆|) (without knowing what points are in S∆).

Provide a dynamic programming algorithm with complexity polynomial in n and m
for triangulating the polygon P so as to minimize the maximize number of points
in any triangle of the triangulation.

What is the total complexity of your algorithm in terms of m and n?

4. (20 points)

Consider the following “more than a fourth frequency problem” We are given a set
A of n ≥ 4 elements which cannot be sorted (e.g. the elements are polynomials or
matrices) but there is a test for equality of any two elements.

Describe a divide and conquer algorithm to find all the elements x (if any) such that
x occurs nx ≥ ⌈n/4⌉ times in A.

Give a recurrence that describes the number of pairwise equality tests made by your
algorithm. Solve the recurrence and derive a bound on the number of equality tests
using your algorithm.
Hint: How many such elements can A have? Also note that a frequently occurring
element must occur frequently in at least one half of the input. You may want to
generalize the problem so as to make it more amenable to the divide and conquer
paradigm.

5. (20 points)

(a) We discussed in class Karatsuba’s method for multiplying two degree n poly-
nomials using O(nlog23) scalar arithmetic operations which is approximately,
O(n1.59). Using this result (as a subprogram), describe a divide and conquer
algorithm using O(nlog23) arithmetic operations which given {a1, . . . , an} com-
putes the polynomial
p(x) = Π1≤i≤n(x − ai) = (x − a1)(x − a2) · · · (x − an). Give a recurrence that
describes the number of arithmetic operations made by your algorithm and
briefly show why this recurrence yields the desired bound. You may assume
n = 2k for some k.

(b) Using the FFT, it is known that we can multiply two degree n polynomials
(with coefficients say in the field of complex numbers) using O(n log n) scalar
arithmetic operations. Using this FFT based method, how many scalar oper-
ations are needed to compute the polynomial p(x) as described above? Justify
your answer.

2

