
CSC373S Lecture 9

• Last time we concluded with a DP algorithm for the knapsack problem having
complexity O(nV) where V =

∑n

i=1 vi.

We remarked that by “scaling” the {vi} values, this algorithm can be used to derive
a (1+ ǫ) approximation with time complexity polynomial in n (the size of the input
representation) and 1

ǫ
. SEe KT text, section 11.8

An algorithm achieving a (1 + ǫ) approximation with time complexity polynomial
in n (the size of the input representation) and 1

ǫ
is said to be an FPTAS algorithm

(standing for fully polynomial time approximation scheme). An algorithm which
achieves a (1+ ǫ) approximation with time complexity polynomial in n but possibly
exponential or worse in 1

ǫ
is called a PTAS algorithm.

iIn term of computing optimal solutions, all “NP complete optimizaton problems”
(i.e. optimization problems corresponding to NP complete decision problems) can
be viewed (up to polynomial time) as a single class of problems. But in the world of
approximation algorithms, this single class splits into many classes of approximation
guarantees. Up to our believed complexity assumptions there are:

1. problems with an FPTAS

2. problems with a PTAS but (given complexity assumption) no FPTAS

3. problems with with some c > 1 approximation but no PTAS

4. problems with an Ω(logn) approximation but no constant approximation

5. problems with no n1−ǫ approximation for any ǫ > 0.

Here n stands for some input size parameter (e.g. number of nodes in a graph)

• We now consider a dynamic programming algorithm which has a somewhat different
style in that the proof of correctness (showing the equivalence between the semantic
and computationally defined arrays) is not an induction on the number of input
items in the solution but is based on some other parameter of the solution.

Namely, lets consider the single source least cost paths problem which is efficiently
solved for graphs in which all edge costs are non-negative. The least cost paths
problem is still well defined as long as there are no negative cycles; that is, the least
cost path is a simple path.

We consider a directed graph G = (V,E) with edge costs c : E → ℜ assuming that
there are no negative cycles although there can be negative edges. (We will later
see how to detect negative cycles.) So since there are no negative cycles we can
assume that the problem is computing the least cost simple path between each pair
of vertices. As before, we consider the nature of an optimal solution and how it is
composed of optimal solutions to “subproblems”. Consider an optimal simple path
π from source s to some node v. This path could be just an edge but if the path π

1

has length greater than 1, then there is some node u which immediately proceeds
v in π. If π is an optimal path to v, then the path leading to u must also be an
optimal path. We are led to define the following semantic array: C ′[i, v] = the
minimum cost of a simple path with path length at most i from source s to node v.
(If there is no such path then this cost is ∞.) The desired answer is then the single
dimensional array derived by setting i = n. We then have the following recursively
defined computational array:

C[0, v] = 0 if v = s and ∞ otherwise. C[i, v] = min{A,B} where A = C[i − 1, v]
and B = minu:(u,v)∈E C(i− 1, u) + c(u, v).

IMPORTANT NOTE: How can we know that we are only obtaining the best simple

path cost? In the proof that the arrays C ′ and C are the same, when considering
case B, how do we know that C[i, v] corresponds to a simple path? The path to u
could be simple but what if v is on the path to u? If this were the case, then there
would be a cycle from v to v which could be removed (since there are no negative
cycles) and this would shorten the path length and can only decrease the path cost.
So that would show that the path corresponding to case A is at least as good.

The time complexity of this algorithm is O(n3) as there are O(n2) array entries
and each entry requires O(n) steps assuming all previous entries have already been
computed.

Note: This presentation is slightly different than in the KT text.

• Suppose we wanted to compute the all pairs least cost problem (i.e. the least cost
path from u to v for all vertices u, v in V). Here again we are assuming that we
can have negative edges but not negative cycles. We could simply run the above
algorithm n = |V | times choosing each v ∈ V as the source node. This would then
have time complexity O(n4). There is a variant of this method utilizing an addi-
tional divide and conquer idea to achieve complexity O(n3 log n). Namely, we need
to define a semantic array C ′[k, u, v] = minimum cost of a simple path with path
length at most 2k from source s to node v.

We present here an alternative DP for the all pairs problem which has yet another
style. Let us assume (wlg = without loss of generality) that V = {1, 2, . . . , n}. We
now define the following semantic array: D′[i, j, k] = the cost of an optimal simple
path π from i to j such that all internal path nodes in π are in {1, 2, . . . , k}. The
desired answer is the array with k = n.

For the computational array, the base case is D[i, j, 0] = c(i, j) if (i, j) ∈ E,
D[i, i, 0] = 0 and D[i, j, 0] = ∞ if i 6= j and (i, j) /∈ E. For k ≥ 1, D[i, j, k] =
min{A,B} where A = D[i, j, k − 1] and B = D[i, k, k − 1] +D[k, j, k − 1].

2

That is, the choice A refers to the optimal path not using node k and choice B using
node k. The time complexity of this algorithm is O(n3).

• This last DP for the all pairs least cost problem is different than the previous DPs
in the sense that the previous DPs only made one recursive call (for each choice
A,B, ..). Here in choice B, we make two recursive calls. There are a number of other
prominent DPs that make more than one recursive call for each “choice”. In section
6.5, the text presents a DP for a simplified RNA structure problem. The KT text
refers to this type of DP as “DP over Intervals”. This example and other similar
DP examples (e.g. optimal binary search trees, CFL recognition and parsing, poly-
gon triangularization, iterated matrix multiplication) are essentially finding optimal
“parse trees” for a given problem. In terms of the KT text, the “choice” to be made
(in determining the relevant subproblems) is how to divide the interval into (two)
subintervals.

Lets consider the iterated matrix multiplication problem (also called the chain mul-
tiplication problem) which is often used as a canonical example of this kind of
DP. Consider a sequence of matrices (over some ring or field F , say the reals)
M1,M2, . . . ,Mn. Assume that we have some known algorithm for computing the
product of two matrices. That is, given matrices Ap×q and Bq×r, we compute the
product A ∗ B in some number of scalar (i.e. over the underlying ring or field F)
operations. Using classical matrix multiplication, such a matrix product takes pqr
scalar multiplications and p(q−1)r scalar additions. To simplify the discussion, lets
say that the cost of such a pairwise matrix product is pqr.

Aside: When we discuss divide and conquer algorithms, we will show that for
p = q = r = n, one can reduce the scalar costs to nα for α < 3.

We wish to have an algorithm for the iterated matrix product (M1 ∗M2 . . . ∗Mn)
using the known algorithm for multiplying two matrices. We know that the matrix
multiplication operator ∗ is associative; that is, (M1(M2 ∗M3)) = ((M1 ∗M2) ∗M3).
So the order in which we apply the known algorithm for two matrices (i.e. the way
we parenthesize the iterated product) does not change the resulting matrix prod-
uct. However, the way we carry out the pairwise products does change the number
of scalar operations. Consider matrices M1,M2,M3 with dimensions (respectively)
(5× 10), (10× 100, (100× 50), then
(M1 ∗M2) ∗M3 costs 5000 + 25000 = 30000 scaler ops and M1 ∗ (M2 ∗M3) costs
50000 + 2500 = 52500 scalar ops.

For this problem, the input items are the matrix dimensions (and not their entries).
Lets say Mi has dimension di−1 × di for 1 ≤ i ≤ n. We view the order of pairwise
matrix mults as a parse tree where the root of the tree is the last pairwise multipli-
cation. That is, the last pairwise multiplication is
(M1 ∗M2 . . .Mi) ∗ (Mi+1 ∗ . . .Mn).

3

Once we determine the best i, we then have to solve the subproblems for the sub-
problems (M1∗M2 . . .Mi) and (Mi+1∗ . . .Mn). This suggests the following semantic
array: C ′[i, j] = the optimal cost to compute MiMi+1 . . . ∗ Mj for 1 ≤ i ≤ j ≤ n.
The corresponding computational array is:
C[i, i] = 0 and for i < j C[i, j] = mink:i≤k≤j−1{C[i, k] + C[k + 1, j] + di−1dkdj}

4

