
CSC373S Lecture 7

• The way I like to think about greedy algorithms is to first try to define a “seman-
tic” array that indicates what we are trying to compute. In the case of weighted
interval selection, we are trying to compute OPT ′(j)= the optimal value that can
be obtained by a non conflicting subset of the intervals I1, . . . Ij. I am using OPT ′

to distinguish it from the recursively defined array OPT . Formally, one needs to
prove that OPT ′(j) = OPT (j) for all j. We usually do this somewhat informally
(often waiving our hands) but we really should have a proof that the two arrays are
equivalent. Of course, the array OPT ′ is defined in such a way that it 1) will be
easy to obtain the desired answer from one or more entries of the array and 2) every
entry of the array can be easily computed from “previous” entries of the array. That
is, when we define the array OPT ′ we usually have some recursively defined way of
computing it (i.e. OPT )

• The slides show that a naive implementation of OPT will be very inefficient (ex-
ponential time) but that the use of memoization provides an efficient recursive im-
plementation. And there is a very efficient iterative implementation. One usually
uses the iterative implementation but usually the conception of the algorithm is in
terms of the recursive definition.

• Finally, we address the question as to how to compute an optimal solution and
not just the value of an optimal solution. The slides give a recursive method for
constructing an optimal solution once the optimal value has be determined. Another
method (which may not be as efficient but is conceptually simpler) is to construct
the solution while computing the optimal value. Namely, when one chooses between
not including (resp. including) Ij in computing OPT (j), we can add a line of code
SOL(j) := SOL(j − 1) (resp. SOL(j) := SOL(j − 1) ∪ {Ij}) according to which
choice afford the higher value.

• Another problem that has a very similar DP solution is the Longest Increasing
Subsequence LIS problem (see Jepson notes).

Given a string x1, x2, . . . xn with xi in some totally ordered set (say the integers),
find the longest subsequence xj(1) < xj(2) . . . < xj(p) with 1 ≤ j(1) < j(2) . . . < j(p).

An appropriate semantic array array for this problem is Q′(k) for 1 ≤ k ≤ n where
Q′(k) = the length of the longest increasing sequence ending at the kth symbol xk.
The desired optimum value is then maxk Q

′(k). The recursive computational array
is defined by Q(k) = 1 + maxj[Q(j) : 1 ≤ j < k and xj < xk] for 1 ≤ k ≤ n. Note
that this implicitly defines Q(1) = 1

One should then prove by induction that Q(k) = Q′(k) for 1 ≤ k ≤ n. And as in
the weighetd interval selection problem, knowing the array Q allows one to compute
an optimal solution corresponding to the optimum value.

• Both the weighted interval selection and LIS DPs share the fact that the correct-
ness is established by induction on the “latest” item that can be part of the solution.

1



We consider another example of a DP that shares this DP style, namely DPs for the
knapsack problem (and also called the {0,1} knapsack problem) defined as follows:

We are given n objects {(wi, vi), . . . (wn, vn)} and a knapsack weight bound W . We
think of wi as the weight or size of the ith object and vi as its value. (Here we will
assume all parameters are positive integers.) A feasible solution is a set of (indices
of) objects T ⊆ {1, . . . , n} such that

∑
i∈T wi ≤ W . The goal is to find a feasible

solution T so as to maximize
∑

i∈T vi. That is, we are trying to maximize the value
of objects that can be placed in the knapsack.
This is a problem that is easy to motivate. It also has some algorithmic significance.
It is a NP hard optimization problem but one that is only “weakly NP hard” in
the sense that if either all the weights wi are “small” or all the values vi are small
then the problem can be solved in polynomial time. To be more precise if these
integer parameters are encoded in unary then the encoding has polynomial length.
Moreover, we can obtain a (1 + ǫ) approximation for any ǫ > 0 in time linear in n

and 1
ǫ
.

• It is easy to formulate a reasonable semantic array and a recursive array which does
not correctly compute what is desired. Namely, suppose we define the semantic
array S ′ : S ′(w) = maximum value obtainable by a feasible solution T whose total
weight is at most w; i.e.

∑
i∈T wi ≤ w. Then we could define a recursive computa-

tional array S: S(0) = 0 and S(w) = maxk:wk≤w vk + S(w − wk).

Now waving hands we could claim that we have solved the problem but something
is wrong here! That is, just writing down the recursive array doesn’t mean that it
is correct and hence that the approach of defining the computational array S ′ as we
did is a viable approach.

Moral: One really has to prove the equivalnce of the semantic and computational
arrays for correctness. Often this seems obvious but it is also easy to make mistakes.

What goes wrong here is that this recursive computational array allows the knapsack
to have more than one copy of an object and the definition of the problem (and hence
the name {0,1} knapsack problem) requires that an object can be used at most once.

• Here is one way to solve the {0,1} knapsack problem. We define the semantic array
S ′(i, w) = largest profit obtainable by a feasible solution T ⊆ {1, . . . i} :

∑
i∈T wi ≤

w. Now we can define an appropriate computational array S(i, w) ‘which can be
proved correct by induction on i. Namely, we define :
S(i, w) = 0 if i = 0 for all w and S(i, w) = max{A,B} for i > 0 where A = S(i−1, w)
and B = vi + S(i− 1, w − wi) if wi ≤ w and 0 otherwise.

As already suggested , one proves S ′(i, w) = S(i, w) by induction on i.

• Lets consider the time complexity (assuming memorization is used to efficiently
implement the recursion or an iterative implementation is used. There are nW

2



entries of S that have to be computed and assuming all previous entries have been
computed, computing any S(i, w) takes O(1) time for a total time complexity of
O(nW ). This is called a pseudo polynomial time algorithm since W might be large
(i.e if the wi and W are n bits then the encoding of the inout uses O(n2) bits and
the complexity is O(n2n). But if all wi are small (or if W is small), say O(logn)
bits, then the alg is running in polynomial time.

• There is an alternative DP for knapscak which is polynomial time when all values
are small. This is in turn can be used to provide arbitrarily good approximations
for every knapsack instance. Now instead of determining the maximum value for a
given weight w, we want to determine the minimum weight to obtain a given value v.

That is, we define a semantic array M ′(i, v) = the minimum weight w such that
there is a solution T ⊆ {1, . . . , i} and

∑
j∈T vj ≥ v. The desired optimum value is

the maximum v such that M ′(n, v) ≤ W . We now have to indicate how to compute
each M ′(i, v) by providing an appropriate recursive array M .

To initialize, we define M(0, v) = ∞ for all v > 0 which indicates that there is no
solution if we do not have any items and define M(0, v) = 0 for all v < 0. For i > 0,
we have:
M(i, v) = min{A,B} where A = M(i− 1, v) and B = wi +M(i− 1, v − vi).

The benefit of this method is that the complexity is now O(nV ) where V =
maxi{vi}.

3


