
CSC373S Lecture 6

• To conclude our current discussion of greedy algorithms, lets summarize the greedy
paradigm:

1. Fixed order greedy (“greedy-like”) template:
Use a “local ordering rule” to order the input items so that they now appear

in the order I1, . . . , In

For i = 1..n
Make a greedy (perhaps non greedy) irrevocable decision about Ij

End For
Examples: The EFT greedy alg for interval selection, the EST greedy alg
for interval colouring, Kruskals MST alg, the online and LPT greedy algs for
makespan on m identical machines.

2. Adaptive order greedy (greedy-like) template:
While there are input items remaining

Use a local ordering rule (based on what has been done so far) to choose
next input item I

Make a greedy (perhaps non greedy) irrevocable decision about Ij

End While

Examples: The greedy alg for interval selection that takes the next interval
having the least number of conflicts with intervals not yet eliminated, Prim’s
MST alg, Dijkstra’s least cost paths alg, Huffman prefix codes.

I have not defined what constitutes a “local ordering”. One definition is that it
is an ordering defined by a function f mapping input items to real numbers and
then use the ordering induced by sorting the numbers {f(Ij) : 1 ≤ j ≤ n}. And
what do we mean by a “greedy decision”. I mean informally, do what seems to
be best for the input item being considered ignoring any possible consequences for
the future; that is, “live for today”. A non-greedy decision (and hence a “greedy-
like” algorithm) has the freedom to make non greedy decision so as to plan for
possible future (i.e.not yet considered) input items. I briefly indicated that one can
improve upon the approximation of the online greedy algorithm (and still be online
in the sense of not being able to sort the inputs) by leaving some room on a lightly
loaded machine to accommodate a job having a large load. There are many ways
to generalize what we might consider to be a greedy algorithm but I claim that all
of the greedy algorithms that we have studied thus far fit the above templates.

• We will now take a deviation from the order of topics in the text to consider dynamic
programming DP and then follow this by divide and conquer, whereas the text
first does divide and conquer. I want to first do DP as it is easy to motivate
DP algorithms by considering two problems (already considered) where we cannot
extend the greedy solutions to apply to a more general problem.

• We start our discussion of DP algorithms by considering the weighted interval se-
lection problem. In this problem, intervals now have weights or values so that an
interval J(i) = (si, fi, wi) where wi is the weight of the ith interval. (Previously

1



we studied the unweighted interval selection problem for which EFT is an optimal
algorithm.) As the Jepson notes show, if we use the EFT algorithm for the weighted
problem, the solution can be arbitrarily bad. Similarly, we can try any of the other
suggested greedy algs for the unweighted case and they can also be shown to be ar-
bitrarily bad. This raises the question as to whether or not there exists any greedy
algorithm that is optimal or even attains a constant approximation for the weighted
interval selection problem.

To answer such a question one has to have a precise definition for what will be
considered a greedy algorithm and I claim that with regard to the given greedy
(or greedy-like) templates, that one can prove that there does not exist a constant
approximation greedy algorithm for weighted interval selection. There are some
extensions of the given templates that may or may not be considered greedy but
do obtain a constant approximation. And if one extends the concept sufficiently
then one can obtain optimality but I believe that such extensions are not what we
intuitively tend to consider to be greedy algorithms.

• Returning to the problem itself (weighted interval selection) we now consider how
dynamic programming provides an optimal solution. See the dynamic programming
notes, slides 2-4. Motivation: look at an optimal solution OPT. Look at the right-
most interval in OPT, and say it is Jj = (sj, fj). Then when we remove Jj, what
remains must be an optimal solution amongst intervals that end before sj.

Aside: I have been thinking of intervals as closed intervals [sj, fj] whereas the notes
now views then as open intervals (sj, fj) meaning that the intervals (s, t) and (t, f)
do not intersect. Everything we have been doing can be made to work for either
view (ie open or closed intervals) but to be consistent with the notes lets now view
intervals as being open.

Once we recognize this “subproblem optimality”, it is not difficult to see how to ob-
tain a recursively defined optimal algorithm. Namely, we again sort the intervals so
that f1 ≤ f2 . . . ≤ fn and then compute p(j) = max{i : fi ≤ sj} for all j : 1 ≤ j ≤ n.
If we were considering closed intervals then we would define p(j) = max{i : fi < sj}.

Having computed p(j) for j = 1, . . . , n (which can be done in time O(n log n)), we
then have the following DP algorithm which will optimally compute the value of an
optimal solution.

OPT (j) = 0 if j = 0
= max{OPT (j − 1), wj + OPT (p(j)} if j > 0.

The first option OPT (j − 1) corresponds to the situation where the jth interval Jj

is not needed in an optimal solution and the second option corresponds to the case
where we do want to include Jj is an optimal solution. It can be the case that there
are optimal solutions with and without Jj and we can then use either solution. (The

2



final question on the assignment asks you to count the number of different optimal
solutions for a given instance of the problem.)

Note: It is standard to think about optimal DP algorithms (for an optimization
problem) by first computing the value of an optimal solution. We will see it is
easy to then convert this to an algorithm that computes an optimal solution. That
is, in determining the optimal value using dynamic programming we are implicitly
showing how to compute an optimal solution corresponding to the optimal value.

• The way I like to think about greedy algorithms is to first try to define a “seman-
tic” array that indicates what we are trying to compute. In the case of weighted
interval selection, we are trying to compute OPT ′(j)= the optimal value that can
be obtained by a non conflicting subset of the intervals J1, . . . Jj. I am using OPT ′

to distinguish it from the recursively defined array OPT . Formally, one needs to
prove that OPT ′(j) = OPT (j) for all j. We usually do this somewhat informally
(often waiving our hands) but we really should have a proof that the two arrays are
equivalent. Of course, the array OPT ′ is defined in such a way that it 1) will be
easy to obtain the desired answer from one or more entries of the array and 2) every
entry of the array can be easily computed from “previous” entries of the array. That
is, when we define the array OPT ′ we usually have some recursively defined way of
computing it (i.e. OPT )

• The slides show that a naive implementation of OPT will be very inefficient (ex-
ponential time) but that the use of memoization provides an efficient recursive im-
plementation. And there is a very efficient iterative implementation. One usually
uses the iterative implementation but usually the conception of the algorithm is in
terms of the recursive definition.

• Finally, we address the question as to how to compute an optimal solution and
not just the value of an optimal solution. The slides give a recursive method for
constructing an optimal solution once the optimal value has be determined. Another
method (which may not be as efficient but is conceptually simpler) is to construct
the solution while computing the optimal value. Namely, when one chooses between
not including (resp. including) Jj in computing OPT (j), we can add a line of code
SOL(j) := SOL(j − 1) (resp. SOL(j) := SOL(j − 1) ∪ {Jj}) according to which
choice afford the higher value.

3


