
CSC373S Lecture 4

• We now return to the material in the text and Jepson notes.

In the Greedy algorithms notes (pages 17-22) and text (section 4.2), a minimum
(max) lateness problem is discussed. The input is a set of jobs, each having a pro-
cessing time and deadline; that is J(i) = (ti, di). All jobs must be scheduled on
one machine (with no overlap). If a job is started at some time si then it will run
(uninterupted) and finish at time fi = si + ti. The lateness of job J(i) is defined as
Li = max{0, fi−di} and the goal is to minimize the maximum lateness L = maxi Li.

In the scheduling literature, when jobs run without interuption, this is called “no
preemption”. Scheduling problems also consider “preemption” (at various costs).

The notes give a number of plausible greedy algorithms for the min lateness problem
and then show that the fixed order d1 ≤ d2 . . . ≤ dn results in an optimal greedy
algorithm. Note that in this problem, once the ordering is fixed, the decision is
mandated. See page 21.

It is easy to show that this is optimal by an exchange argument. Namely, given any
solution, it can be transformed into a solution satisfying the ordering by deadlines.
Formally, this is an induction on the number of adjacent transpoitions in a solution
or a proof by contradiction (if one asserts that there is no optimal solution using this
order). But informally, one just finds an adjacent pair “out of order” and then show
that transposing these jobs cannot increase the maximum lateness. For assignment
question 4, you can use the same kind of exchange argument.

• In the Greedy graph algorithms notes and the text, two important graph problems
are discussed. The first problem is the “single source shortest distance” problem. I
would rather refer to it as the single source “least cost” problem since “distance”
can be confused with graph distance (i.e. length of a path) as opposed to the cost
of a path.

In any case, we are given an edge weighted directed graph G = (V,E) with weight
function w : E → ℜ+; note all edge weights are positive or non negative. We let
w(e) denote the weight of edge e. We also assume that every vertex is reachable (by
at least one path) from s. (See notes pages 2-9.) The goal is to find the least cost
path from a distinguished vertex s to all nodes v ∈ V . Dijkstra’s algorithm depends
on the edge costs being non-negative. Later we will use dynamic programming (DP)
to deal with negative cost edges. (There are ways to run Dijkstra’s alg iteratively
so as to deal with negative edges but we won’t be discussing that.)

Dijkstra’s algorithm appears on page 5 of the Greedy graph algorithms notes.

Things to observe:

1. Dijkstra’s algorithm is the basis for GPS navigation systems. One can think
of the destination as the “source” and the current location as the target.

1



2. Since all edges are non negative, the least cost path is a simple path.

3. We will see that the solution (ie the set of paths) becomes a directed tree with
root s.

4. Dijkstra’s algorithm (for single source to all nodes) can be viewed as a greedy
algorithm where the choice of the next item (e.g. edge to choose or vertex to
extend) is chosen adaptively (i.e. based on what has been decided this far).
Aside: for the problem of computing an optimal s− t path for a fixed target t,
I would no longer consider Dijkstra to be a greedy algorithm but rather better
viewed as a DP.

5. The proof is by induction showing that for any v ∈ Si, we have computed the
least cost path to v where Si is the set of nodes reached by the end of the ith

iteration. In the proof there is a claim and the first inequality in this claim is
an equality.

• The last question on the problem set shows that Dijkstra’s algorithm can be gener-
alized to work for other path problems.

• The other graph theoretic problem in the notes is the minimum spanning tree MST
problem. The notes mention three optimal algorithms, namely Kruskals algorithm,
Prims algorithm and the Reverse-Delete algorithm.

Things to observe:

1. Kruskal’s algorithm applied to any graph will determine the connected com-
penents of the graph and the MST for each component. That is, Kruskal’s alg
computes a min cost spanning forest, with an MST for each component. Prim’s
algorithm will find the MST of the connected component in which the starting
node s occurs. It can be run a number of times to find all connected compo-
nents. The reverse-delete algorithm is not well defined if G is not connected
but can be defined to work with all graphs. It can be shown that this algo-
rithm will always select the same set of edges as Kruskals algorithm (when the
MST is not unique). The reverse delete alg does not seem easy to implement
efficiently.

2. Kruskal’s algorithm can be veiwed as a fixed order greedy algorithm where
items are edges sorted by c(e1) ≤ c(e2) . . . ≤ c(em) and edges taken greedily
in the sense that whenever the current edge being considered connects two
components, it is taken. Prim’s algorithm can be viewed as an adaptive greedy
algorithm in that the next edge to be chosen depends on the current component
being constructed.

3. Unlike Dijkstra’s least cost algorithm, the MST algorithm works (computes an
optimal MST) when there are negative edges. This implies that we can also
use the MST algorithm to compute the maximum cost spanning tree (or max
cost spanning forest) by taking the negative of each edge. More directly, we
can use the ordering c(e1) ≥ c(e2) . . . ≥ c(em) and again accept greedily (never
forming a cycle).

2



4. Kruskal’s greedy algorithm for MST can be abstracted to a wider class of
problems when one realizes that tree edges T ⊆ E in a graph determine an
independence set system called matroids. Matroids also abstract (and this is
the initial motivation) linear indepedence in a vector space. The key property
(leading to many other facts) is that any independent set of elements can be
extended to a basis. In a connected graph, the edges in a spanning tree is
a basis (i.e. has maximal number of independent elements). This standard
greedy alg of ordering the elements by largest weight is an optimal alg for
optimally computing a linear function over any matroid.

5. The proof of Kruskal’s algorithm that I like can be phrased as a “promising
argument”; namely, the partial solution Si at the end of the ith iteration can
be extended to an optimal solution OPTi. The essense of this argument is that
if one adds an edge to any spanning tree, a unique cycle C will be formed. If
the current edge e that Kruskal’s algorithm is adding to Si is not in OPTi then
there has to be an edge e′ in the cycle (that is not in the Greedy solution) with
weight w(e′) ≥ w(e) and it can be removed to form a new spanning tree which
is at least as good. This proof then abstracts to the more abstract setting of
matroids mentioned above.

6. The application to clustering data is worth noting. There are many reasonable
ways to define the objective function in a clustering. Some defintions lead to
NP hard optimization problems but usually ones that in some sense can be
computed “practically”. In general, “clustering” is an informal concept and
there is no one best definition but it is an important concept used in many
applications.

• Next time we will present one more greedy algorithm, the online greedy approxima-
tion for the makespan problem. See text section 11.1 and Approximation algorithm
notes.

3


