
CSC373S Lecture 23

• We started the class answering questions about the final assignment.

• Lets consider one more IP/LP, namely for the weighted Max-Sat problem (for an ar-
bitrary CNF formula F ). Until recently (result presented at a conference in January,
2011), the best approximation ratio (3/4) for Max-Sat was based on the method to
be discussed. The recent result provides a randomized greedy algorithm with the
same approximation ratio (3/4 in expectation). The best known hardness of approx-
imation is 7/8. Here we will again (as in set cover) use randomization in a natural
way when we have a LP relaxation where the fractional variables can be viewed as
probabilities. Consider the following IP formulation of (Weighted) Max-Sat:

Note again: Here we are looking at all CNF formulas as input in contrast to Max-
k-Sat and Exact Max-k-Sat.

maximize
∑

j wj · zj

subj to
∑

i∈C+

j
yi +

∑
i∈C−

j
(1− yi) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}

Here the intended meaning of zj is that clause Cj will be satisfied and the intended
meaning of yi is that the propositional variable xi is set true (false) if yi = 1 (resp 0).

C+
j (resp C−

j ) is the set of all variables occurring positively (resp negatively) in Cj.

e.g. for Cj = x1 ∧ x̄2 ∧ x3, we have C+
j = {x1, x3};C

−

j = {x2}

Since we have forced our fractional solutions to be in [0,1], we can think of each
fractional variable as a probability. Then we can do randomized rounding (as we
did for the set cover problem). Let {y∗i , z

∗

j } be an optimal LP solution. Then we
set ȳi = 1 with probability y∗i to obtain an integral solution. We do not need to
round the {z∗j } variables since the desired solution is a truth assignment (which will
in turn determine which clauses are satisfied), but we will need to use properties of
the LP solution to derive an approximation ratio.

We can show that this approach will lead to a 1−(1−1/k)k ≥ 1−1/e approximation
(in expectation) for the contribution of clauses having at least k literals since (1−
1/k)k < 1/e (and converges to 1/e as k grows). Hence the approx ratio is≥ 1−1/e >
.632. We will need one further idea to obtain the stated (3/4) ratio. And (as far as I
can see) unlike the new randomized greedy result, this method can be derandomized
(by th method of conditional expectation) to obtain a deterministic algorithm with
the same 3/4 approximation ratio.

NOTE: Here I am again expressing the approx ratio for Max Sat as a fraction < 1.
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This bound is getting worse for large k. On the other hand the approximation ratio
from the “naive randomized alg” is 1 − 2−k for clauses with exactly k variables.
and this gets better for large k. By taking the best of these two algorithms we can
guarantee the stated 3/4 approximation ratio.

Let LP-OPT denote the optimal fractional solution value That is, LP-OPT =∑
j wjz

∗

j And let the rounded solution (a random variable since we are choosing
the integral values ȳi randomly and independently with probability y∗i .

We want to show that E[rounded solution] ≥ (1− 1/e) LP-OPT.

As stated above, we will show more specifically that for any clause Cj with k literals,
the probability that Cj is satisfied (in the rounded solution) is at least βkz

∗

j where
βk = 1− (1− 1/k)k and then as noted that βk ≥ (1− 1/e) for all k.

This will then imply the desired result by the linearity of expectations.

• Here is the analysis.

We will need to make use of the arithmetic geometric mean inequality whcih states
that for non negative real values,

a1+a2+...+ak
k

≥ (a1 · a2 . . . · ak)
1

k

or equivalently that
[a1+a2+...+ak

k
]k ≥ (a1 · a2 . . . · ak).

Let Cj be a k literal clause and by renaming we can assume Cj = x1 ∨ x2... ∨ xk.

Cj is satisfied if not all of the yi are set to 0 (when we set yi = 1 with probability
y∗i ).

The probability that Cj is satisfied is then 1− Πk
i=1(1− y∗i ).

By the arithmetic-geometric mean inequality this probability is then at least

1− (
∑k

i=1
(1−y∗i )

k
)k

= 1− (1−
∑k

i=1
y∗i
k
)k

≥ 1− (1−
z∗j
k
)k

where the last inequality is by the LP constraint
∑

i∈C+

j
yi +

∑
i∈C−

j
(1 − yi) ≥ zj

(and keeping in mind the variable renaming making all literals positive).

If one defines g(z) = 1− (1− z
k
)k then g(z) is a concave function with g(0) = 0 and

g(1) = βk. By concavity, g(z) ≥ βkz for all 0 ≤ z ≤ 1.

That ends the proof.

• We can then use the method of conditional expectations to obtain a deterministic
algorithm. That is, so far we have a randomized algorithm that has a good ex-
pectation. So let E[F ] be this expectation. By conditional expectation we have
E[F ] =E[F |x1 = 1] Prob [yi = 1] + E[F |x1 = 0] Prob [yi = 0]
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It follows that one of these two expectations is at least E[F ]. We can then use the
large expectation (or rather use the larger fractional opt we obtain when setting x1

to 1 and 0) to determine how to set x1. We can continue to do this so as to set all
variables. Note that this entails calling an LP solver O(n) times.

• Finally, we combine this method with the “naive randomized method” to yield a
3/4 approx for Max Sat. Namely, for the naive method, we have for a clause C with
k literals E[rounded solution] ≥ αkwC ≥ αkwCz

∗

C since z∗C ≤ 1. So if we choose the
naive method with probability 1/2 and the LP randomized method with probability
1/2, we get that the expected value obtained from clause C is ≥ αk+βk

2
wCz

∗

C

It is easy to verify that for k = 1, 2 that (αk + βk) = 3/2 and for k ≥ 3, that
(αk + βk) ≥ 7/8 + (1− 1/e) ≥ 3/2.
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