
CSC373S Lecture 22

• Our next application of IP/LP is the set cover problem, a generalization of vertex
cover. We will consider the following (weighted) set cover problem.

Given a collection of sets C = S1, ..., Sn over a universe U = {u1, ..., um} with weight
function w : C → ℜ≥0, find a subcollection C ′ such that ∪i:Si∈C′Si = U

We can formulate this as a {0, 1} IP :

minimize
∑

i wixi

subj to
∑

i:uj∈Si
xi ≥ 1 for all uj ∈ U

IP: xi ∈ {0, 1} (Intended meaning is that Si in the cover

LP relaxtion : xi ≥ 0

Vertex cover can be seen as a special case of set cover, namely:

A vertex v is a set Sv = {ej : v is adjacent to edge ej} so that the universe is the
set of edges E and the sets in the collection are the vertices V .

Note that this collection of sets has the property that each universe element appears
in exactly two sets. This leads to what is called the f -frequency set cover problem
where each element occurs in at most f sets. Note that vertex cover is essentially
the 2-frequency set cover problem. (In the 2-frequency problem, we can also have
have universe elements which only occur once but we would then choose the set
containing such an element as part of our cover and remove the elements in that
sset. We would continue to do so until all elements were in at least two sets.)

In the f -frequency restriction, there are at most f different Si in the summation∑
i:uj∈Si

so we could rewrite this explicitly by stating:

subj to
∑

1≤i≤s(j) xji ≥ 1

where Sj1 , . . . , Sjs(j) are the sets containing uj for some s(j) ≤ f .

Then solving the LP relaxation we round the LP opt {x∗
i |1 ≤ i ≤ n} by setting

x̄i = 1 iff x∗
i ≥

1
f
.

• There is a very natural and efficient greedy algorithm for solving the weighted ver-
tex cover problem with approximation hd where d = maxi |Si|. But we want to
use this problem to illustrate the concept of randomized rounding. The following
randomized rounding algorithm will with high probability produce a cover that is
within a factor O(Hd) of the optimum. For simplicity we will just prove the factor
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O(logm). (There is also a connection between a primal dual approach to solving the
LP relaxation and the ”natural” deterministic greedy algorithm that achieves ap-
proximation ratio Hd but we will not have time to discuss primal dual algorithms.)
We consider the LP relaxation of the weighted set cover problem:

min
∑

i wi · xi

subj to
∑

i:uj∈Si
xi ≥ 1

xi ≥ 0 for LP

We solve this LP and find an optimal solution {x∗
1, ..., x

∗
n}. We know that 0 ≤ x∗

i ≤ 1
since in an optimal solution, each x∗

i is at most 1.

We now treat the x∗
i values as probabilities and choose Si (to be in our set cover)

with probability x∗
i .

Now this is a covering minimization problem and the chosen sets may not be a
cover. So we will most likely have to repeat this process enough times to have a
good probability that all elements are covered.

First, it is easy to calculate the expected cost of the sets selected by the LP opti-
mum. |calE{x∗

i
}[cost(C

′)] =
∑

wi · Prob[Si is chosen] =
∑

wix
∗
i = OPTLP .

Now we need to calculate the probability that a given uj = u is not covered. Lets
say that u occurs in sets S1, ..., Sk. The LP solution must satisfy the constraint :
∑

i:u∈Si
x∗
i ≥ 1.

Under this constraint, we can maximize the probablity that u is not covered by
setting x∗

i = 1/k for 1 ≤ i ≤ k. So the probability that u is not covered is at most
(1− 1/k)k ≤ 1/e.

Suppose now that we run the same randomized rounding algorithm c lnm times
(m = |U |) for some constant c, each time adding sets (given by the rounded LP)
to the set cover. While we may be adding the same set many times (and hence
overcounting), the cost of the cover is now at most (c lnm)OPTLP .

The probability that u is not covered is now ≤ (1/e)c lnm = (1/m)c.

Let E1, . . . Em be a set of random events with Prob[Ei] ≤ pi. Then Prob[at least
one Ei occurs] ≤

∑m

i=1 pi. Letting Ei be the event that element ui is not cov-
ered. Then by the union bound the probability that some u ∈ U is not covered is
≤ |U |(1/m)c = (1/m)c−1.

Using the Markov inequality we can also say that the expected cost is within
O(logm)OPTLP with good probability so that we get both a cover and costO(logm)OPTLP
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with good probability which certainly shows that with good probability we get a
cover with cost O(logm)OPT since OPTLP ≤ OPT .

• Another application of randomized rounding is used to show that Max-Sat (for
arbitrary formulas) can be approximated with approximation factor 3

4
.

• In some case, it isn’t so obvious how to represent an optimization problem as an
IP. Consider the Max Cut problem. We can think of a solution as a {0,1} choice
about which vertices to (say) put into A in an (A,B) cut. We could have variables
yi ∈ {+1,−1} with the intended meaning yi = 1 (resp -1) iff vertex vi in A (resp
B).

Then we would want to
maximize

∑
1≤i<j≤n

1
2
w(i, j)(1− yiyj)

subj to yi ∈ {+1,−1} i.e. y2i = 1

But obviously the objective (and the condition y2i ) here is not a linear function
and there doesnt appear to be any nice IP way to count the number or weight of
edges in A × B. This ”quadratic program” leads to a different type of relaxation
(semi definite programming SDP) which can be used to provide the best known
approximation, namely ≈ .87856. However, this result is beyond the scope of our
discussion. (The same SDP approach provides the same approximation factor for
Max-2-Sat.)

Instead we will think of a cut as the edges in A×B and hence have a {0,1} variable
xe = x(uv) for every edge e with the intended meaning that x(uv) = 1 iff (u, v) in
the cut. We can assume that all edges are present by setting w(e) = 0 for any edge
e /∈ E. Now we need to find inequalities that will insure that the {xe|xe = 1} defines
a cut. This isnt so obvious but here is what works.

max
∑

(i,j)∈E w(i,j) · x(ij)

subj to x(ij) ∈ {0, 1}
xij + xjk ≥ xik; xik + xkj ≥ xij, etc for every triangle (i, j, k) (all permutations)
xij + xik + xjk ≤ 2

You can think of these “triangle inequalities” as saying that the possible sizes of cut
for each triangle are 0 or 2. These are called metric-cut inequalities.

Clearly every cut must satisfy these constraints and conversely, every {0,1} solution
of this IP defines a cut. This can be seen by the following argument:

1. Define a relation i ∼ j if xij = 0 or i = j

2. Show this is an equivalence relation: transitivity is the only thing to check,
and by the triangle condition xij = xik = 0 implies xjk = 0

3. Show that there are at most 2 equivalence classes. This follows from the second
trianlge condition; if i, j, k are in different classes, then xij + xik + xjk = 3.
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4. The equivalence classes are the cut.

• Another interesting IP formulation issue is for the (NP hard) makespan problem
on unrelated machines. Early in the course we mentioned makespan problem on
m identical machines. The goal is to schedule all n jobs on m identical so as to
minimize the latest finishing time where each job Jj is described by a processing
time pj.

In the IP formulation, the problem is:

minimize t

subj to
∑

1≤i≤m xi,j = 1 for each job Jj Each job is scheduled

∑
1≤j≤n pjxi,j ≤ t The makespan is at most t

xi,j ∈ 0, 1 Integrality constraint

Here the intended meaning is that xi,j = 1 iff job Jj is scheduled on machine Mi.

In the unrelated machines model, each job Jj has a (possibly different) processing
time pi,j on machine Mi. Whereas the identical machines problem has a reason-
ably good greedy (4/3) approximation algorithm (sort so that p1 ≥ p2...) and then
schedule greedily, there is no known greedy algorithm for this problem that has an
O(1) approximation.

We have the same IP with pi,j now replacing pj in the constraint above. It is easy
to see that the LP relaxation of this IP has an unbounded integrality gap: consider
one job with procesing time m, which has OPT = m and OPTLP = 1. The IP must
set xi,j = 0 if pi,j > t where as the fractional OPT does not have this constraint. So
we want to say “for all (i, j): if pi,j > t then xi,j = 0”.

But this isnt a linear constraint!

Here a non-oblivious rounding is used to produce the best known 2-approximation
for this problem. Namely, lets assume that all parameters are integers. Suppose we
had a guess T for a bound on the makespan.

We can obtain such guesses by using a binary search over the set of all possible
makespan values. For each such guess T, we set up a linear system of constraints
LP (T ) as above replacing t by T and removing any xi,j having pi,j > T . Now we
only want to test for and find a feasible fractional solution for LP (T ) (without any
objective function) and using binary seacrh we find the smallest T for which LP (T )
has a fractional solution.

Now there will be a more sophisticated “rounding procedure” that will allow us to
construct an integral {0,1} solution which will achieve a makespan of 2T whereas
OPT ≥ OPTLP = T .

We wont do this now (or even later) but to do the rounding procedure we need
results from LP theory. Letting n denote the number of LP variables and m the
number of inequlaities, LP theory shows that there are computable optimal LP
solutions (so called extreme points) such that any such solution has at most n+m
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non zero variable values and (for LPs with integral coefficiants) at least n − m of
them are intgeral.
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